The given geometric series as shown in the question is seen to; Be converging with its' sum as 81
<h3>How to identify a converging or diverging series?</h3>
We are given the geometric series;
27 + 18 + 12 + 8 + ...
Now, we see that;
First term; a₀ = 27
Second Term; a₁ = 2(27/3)
Third term; a₂ = 2²(27/3²)
Fourth term; a₃ = 2³(27/3³)
Thus, the formula is;
2ⁿ(27/3ⁿ)
Applying limits at infinity gives;
2^(∞) * (27/3^(∞)) = 0
Since the terms of the series tend to zero, we can affirm that the series converges.
The sum of an infinite converging series is:
S_n = a/(1 - r)
S_n = 27/(1 - (2/3)
S_n = 81
Read more about converging or diverging series at; brainly.com/question/15415793
#SPJ1
12 ft I had the question the other day on online school :)
The requirement is that every element in the domain must be connected to one - and one only - element in the codomain.
A classic visualization consists of two sets, filled with dots. Each dot in the domain must be the start of an arrow, pointing to a dot in the codomain.
So, the two things can't can't happen is that you don't have any arrow starting from a point in the domain, i.e. the function is not defined for that element, or that multiple arrows start from the same points.
But as long as an arrow start from each element in the domain, you have a function. It may happen that two different arrow point to the same element in the codomain - that's ok, the relation is still a function, but it's not injective; or it can happen that some points in the codomain aren't pointed by any arrow - you still have a function, except it's not surjective.
Answer:
x=11
Step-by-step explanation:
Notice that the first diagram is similar with the second diagram with ratio 1:2
Ex: Side length of JK is 6 and NP being 12, 6:12→1:2
You can conclude that x:22 needs to follow the ratio of 1:2
Thus, x=11