Answer:
Statistical sampling is drawing a set of observations randomly from a population distribution. ... By repeating the sampling operation a large number of times, perhaps 1000, we decrease the sampling error and increase the quality of the estimates.
Answer:
68 minutes, 1 mile every 8.5 minutes
Step-by-step explanation:
:)
Answer: 3.5, 4.5, 9.5, 3.5
Step-by-step explanation:
Look at the image below to see where A, B, C, and D are.
A + B = 8
B + D = 8
A + C = 13
C - D = 6
we can see that A + B = 8 and D + B = 8, so A = D
substitute this into A + C = 13 to get D + C = 13
from D + C = 13 we can get D = 13 - C
plug this into C - D = 6 to get C - (13 - C) = 6
2C - 13 = 6
2C = 19
C = 9.5
Now we can find D = 13 - C = 13 - 9.5 = 3.5
D = 3.5
Now we can find A = D = 3.5
A = 3.5
Now we can find B from A + B = 8
B = 8 - A = 8 - 4.5 = 4.5
B = 4.5
Answer:
The probability table is shown below.
A Poisson distribution can be used to approximate the model of the number of hurricanes each season.
Step-by-step explanation:
(a)
The formula to compute the probability of an event <em>E</em> is:

Use this formula to compute the probabilities of 0 - 8 hurricanes each season.
The table for the probabilities is shown below.
(b)
Compute the mean number of hurricanes per season as follows:

If the variable <em>X</em> follows a Poisson distribution with parameter <em>λ</em> = 7.56 then the probability function is:

Compute the probability of <em>X</em> = 0 as follows:

Compute the probability of <em>X</em> = 1 as follows:

Compute the probabilities for the rest of the values of <em>X</em> in the similar way.
The probabilities are shown in the table.
On comparing the two probability tables, it can be seen that the Poisson distribution can be used to approximate the distribution of the number of hurricanes each season. This is because for every value of <em>X</em> the Poisson probability is approximately equal to the empirical probability.