1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
just olya [345]
3 years ago
12

Stress at work: In a poll conducted by the General Social Survey, 80% of respondents said that their jobs were sometimes or alwa

ys stressful. One hundred and ninety workers are chosen at random. Use the TI-84 Plus calculator as needed. Round your answer to at least four decimal places. (a) Approximate the probability that 140 or fewer workers find their jobs stressful. (b) Approximate the probability that more than 155 workers find their jobs stressful. (c) Approximate the probability that the number of workers who find their jobs stressful is between 145 and 158 inclusive. Part 1 of 3
Mathematics
2 answers:
FromTheMoon [43]3 years ago
6 0

Answer:

(a) Probability that 140 or fewer workers find their jobs stressful is 0.02385

(b) Probability that more than 155 workers find their jobs stressful is 0.28774

(c) Probability that the number of workers who find their jobs stressful is between 145 and 158 inclusive is 0.75996.

Step-by-step explanation:

We are given that in a poll conducted by the General Social Survey, 80% of respondents said that their jobs were sometimes or always stressful.

Let p = % of respondents said that their jobs were sometimes or always stressful = 80%

The z score probability distribution for proportion is given by;

                      Z = \frac{\hat p -p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }  ~ N(0,1)

where, \hat p = % of respondents said that their jobs were stressful in a sample of one hundred and ninety workers

(a) The probability that 140 or fewer workers find their jobs stressful is given by = P( \hat p \leq \frac{140}{190} )

     P( \hat p \leq \frac{140}{190} ) = P( \frac{\hat p -p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } } \leq \frac{\frac{140}{190} -0.80}{\sqrt{\frac{\frac{140}{190}(1-\frac{140}{190})}{190} } } ) = P(Z \leq -1.98) = 1 - P(Z < 1.98)

                                                                  = 1 - 0.97615 = 0.02385

(b) The probability that more than 155 workers find their jobs stressful is given by = P( \hat p > \frac{155}{190} )

     P( \hat p > \frac{155}{190} ) = P( \frac{\hat p -p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } } > \frac{\frac{155}{190} -0.80}{\sqrt{\frac{\frac{155}{190}(1-\frac{155}{190})}{190} } } ) = P(Z > 0.56) = 1 - P(Z \leq 0.56)

                                                                  = 1 - 0.71226 = 0.28774

(c) The probability that the number of workers who find their jobs stressful is between 145 and 158 inclusive is given by = P( \frac{145}{190}  \leq \hat p \leq \frac{158}{190} )

    P( \frac{145}{190}  \leq \hat p \leq \frac{158}{190} )  = P( \hat p \leq \frac{158}{190} ) - P( \hat p < \frac{145}{190} )

    P( \hat p \leq \frac{158}{190} ) = P( \frac{\hat p -p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } } \leq \frac{\frac{158}{190} -0.80}{\sqrt{\frac{\frac{158}{190}(1-\frac{158}{190})}{190} } } ) = P(Z \leq 1.16) = 0.87698

    P( \hat p < \frac{145}{190} ) = P( \frac{\hat p -p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } } < \frac{\frac{145}{190} -0.80}{\sqrt{\frac{\frac{145}{190}(1-\frac{145}{190})}{190} } } ) = P(Z < -1.19) = 1 - P(Z \leq 1.19)

                                                                  = 1 - 0.88298 = 0.11702                                                  

Therefore,  P( \frac{145}{190}  \leq \hat p \leq \frac{158}{190} ) = 0.87698 - 0.11702 = 0.75996

Svet_ta [14]3 years ago
5 0

Answer:

a) P=0.019

b) P=0.263

c) P=0.794

Step-by-step explanation:

We assume that the poll gives the population's proportion of respondents said that their jobs were sometimes or always stressful (p=0.8).

Then, a sample of size n=190 is taken.

The sample mean is:

\mu=np=190*0.8=152

The sample standard deviation is:

\sigma=\sqrt{np(1-p)}=\sqrt{190*0.8*0.2}=\sqrt{30.4}=5.514

The probability that 140 or fewer workers find their jobs stressful is:

z=(X-\mu)/\sigma=(140.5-152)/5.514=-11.5/5.514=-2.08 \\\\P(X\leq140)=P(X

Note: a correction for continuity is applied.

The probability that more than 155 workers find their jobs stressful is

z=(X-\mu)/\sigma=(155.5-152)/5.514=3.5/5.514= 0.635 \\\\P(X>155)=P(X>155.5)=P(z>0.635)=0.263

The probability that the number of workers who find their jobs stressful is between 145 and 158 inclusive is:

z_1=(X_1-\mu)/\sigma=(158.5-152)/5.514=6.5/5.514= 1.179\\\\  z_2=(X_2-\mu)/\sigma=(144.5-152)/5.514=-7.5/5.514= -1.360 \\\\ P(145\leq X\leq 158)=P(144.5< X< 158.5)\\\\P(145\leq X\leq 158)=P(X

You might be interested in
Garth had unexpected expenses this month and didn’t have enough in his saving account to pay the rent of $600. He went to Loansh
r-ruslan [8.4K]

Answer:

wait i am doing

10 min wait

4 0
3 years ago
Gary has a 12gallon gas tank when he filled his tank up he pumped 8 gallons of gas what fraction of the tank had been empty
Assoli18 [71]
2/3 I believe is the answer
5 0
3 years ago
What is 5.9 and 1 in standard form...? &gt;_
Blababa [14]
The answer would be 59
3 0
3 years ago
What is one question you still have about something you learned math
Karolina [17]

Answer:

how to find the slope from a graph

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
PLZ HELP! I WILL GIVE BRAINLIEST AND FIVE STAR AND THANKS TO ANSWERS <br> thank u have a great day!
ozzi

Answer:

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • Phyllis paid $408 for new wall-to-wall carpeting in her living room. The carpeting was $12 per square yard, plus a $120 installa
    5·1 answer
  • List all number sets that apply to each number
    13·1 answer
  • If there is a positive correlation between number of years of education and the amount of vacation time, which of the following
    7·2 answers
  • I will mark as brillianest...plzz solve the question.<br><br>Factorize: <br>1) 6x²+x-2<br>​
    15·1 answer
  • Analyze the diagram below and complete the instructions that follow.
    14·1 answer
  • David borrows $15,000 for a new car. He is charged 6% simple interest per year. If he paid $4500 in interest, how many years did
    10·1 answer
  • Domain:<br> Range:<br> HELP RQ
    8·1 answer
  • 3. the smallest number by which 168 must be multipled to get the perfect square number. ICA) 3 1(B)2 (c) 4 (o)5​
    10·1 answer
  • Express… As a limit of a right Reimann sum
    8·1 answer
  • 2. Two rectangular lots are adjacent to each other, as shown in the diagram below. Using a function operation, determine how man
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!