Answer:
t = 6 years
Step-by-step explanation:
Use the simple interest formula: i = prt, where p is the principal, r is the interest rate as a decimal fraction, and is the elapsed time, in years.
Here we want to know how long it will take for the interest alone to reach $449.40. We first solve i = prt for t, obtaining t = i/(pr).
Here, the length of time is t = ($449.40) / (0.06*$1498.00). This works out to
t = 5.9947, or approximately 6 years.
t = 6 years
Answer:
A
Step-by-step explanation:
The diagonals of a parallelogram bisect each other. Hence, the two shorter sides created on diagonal RT ("6x-7" and "x+28" ) are equal.
<em>We can set them equal and solve for x:</em>
<em>
</em>
<em />
<em>So the side length of 6x -7 is:</em>
<em>6(7)-7 = 35</em>
<em>and the side length of x + 28 is:</em>
<em>7 + 28 = 35</em>
<em />
<em>THus, the diagonal RT = 35 + 35 = 70 units</em>
<em />
<em>Answer choice A is right.</em>
Answer:
3x-8y-16 = 0
Step-by-step explanation:
Answer:
μ ≈ 2.33
σ ≈ 1.25
Step-by-step explanation:
Each person has equal probability of ⅓.
![\left[\begin{array}{cc}X&P(X)\\1&\frac{1}{3}\\2&\frac{1}{3}\\4&\frac{1}{3}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7DX%26P%28X%29%5C%5C1%26%5Cfrac%7B1%7D%7B3%7D%5C%5C2%26%5Cfrac%7B1%7D%7B3%7D%5C%5C4%26%5Cfrac%7B1%7D%7B3%7D%5Cend%7Barray%7D%5Cright%5D)
The mean is the expected value:
μ = E(X) = ∑ X P(X)
μ = (1) (⅓) + (2) (⅓) + (4) (⅓)
μ = ⁷/₃
The standard deviation is:
σ² = ∑ (X−μ)² P(X)
σ² = (1 − ⁷/₃)² (⅓) + (2 − ⁷/₃)² (⅓) + (4 − ⁷/₃)² (⅓)
σ² = ¹⁴/₉
σ ≈ 1.25