F = G mM / r^2, where
<span>F = gravitational force between the earth and the moon, </span>
<span>G = Universal gravitational constant = 6.67 x 10^(-11) Nm^2/(kg)^2, </span>
<span>m = mass of the moon = 7.36 × 10^(22) kg </span>
<span>M = mass of the earth = 5.9742 × 10^(24) and </span>
<span>r = distance between the earth and the moon = 384,402 km </span>
<span>F </span>
<span>= 6.67 x 10^(-11) * (7.36 × 10^(22) * 5.9742 × 10^(24) / (384,402 )^2 </span>
<span>= 1.985 x 10^(26) N</span>
It should be 12 N. the force of the book on the table should be the same as the force of the table on the book.
Answer
6.66 seconds imma seem like an idiot if something like this is werong
Explanation:
dogg is speed
100/15
The average dissipated power in a resistor in a ac circuit is:

where R is the resistance, and

is the root mean square current, defined as

where

is the peak value of the current. Substituting the second formula into the first one, we find

and if we re-arrange this formula and use the data of the problem, we can find the value of the peak current I0: