Answer:
1.6 m/s
Explanation:
First you need to find the momentums of each disc by multiplying their velocities with mass.
disc 1: 7*1= 7 kg m/s
disc 2: 1*9= 9 kg m/s
Second, you need to find the total momentum of the system by adding the momentums of each sphere.
9+7= 16 kg m/s
Because momentum is conserved, this is equal to the momentum of the composite body.
Finally, to find the composite body's velocity, divide its total momentum by its mass. This is because mass*velocity=momentum
16/10=1.6
The velocity of the composite body is 1.6 m/s.
Answer:
66.2 sec
Explanation:
C₁ = 1.0 F
C₂ = 1.0 F
ΔV = Potential difference across the capacitor = 6.0 V
C = parallel combination of capacitors
Parallel combination of capacitors is given as
C = C₁ + C₂
C = 1.0 + 1.0
C = 2.0 F
R = resistance = 33 Ω
Time constant is given as
T = RC
T = 33 x 2
T = 66 sec
V₀ = initial potential difference across the combination = 6.0 Volts
V = final potential difference = 2.2 volts
Using the equation


t = 66.2 sec
The answer is A. Bob (<span>object's length)
</span>
Answer:
2Ω
Explanation:
If a 18Ω resistance is cut into three equal parts each of the resistance will be 18Ω/3 = 6Ω
Equivalent ratio in parallel is expressed as:
1/R = 1/6 + 1/6 + 1/6
1/R = 3/6
Cross multiply
3R = 6
R = 6/3
R = 2Ω
Hence the required equivalent resistance is 2Ω