1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dvinal [7]
3 years ago
11

What is the acceleration of a car that travels in a straight line?

Physics
2 answers:
Sphinxa [80]3 years ago
6 0
Acceleration occurs when there is a change in speed or direction. If it travels in a straight line, there is no speed or change in direction as it is constant througout, hence 0 acceleration.

hope this helps!! ✨
Bond [772]3 years ago
4 0
<span>Average and instantaneous (by contrast there is also centripetal for angular motion)

</span>
You might be interested in
A child is trying to throw a ball over a fence. She gives the ball an initial speed of 8.0 m/s at an angle of 40° above the hori
EastWind [94]

Answer:

the child is 1.581 m far from the fence

Explanation:

The diagrammatic illustration that give a better view of what the question denote can be seen in the image attached below.

From the image attached below, let assume that the release point is the origin, then equation of the motion (x) is as follows:

x - x_o = u_xt

\mathtt{x = u_xt  \ \  \ since (x_o = 0)}  ---- (1)

the equation of the motion y is :

\mathtt{y - y_o =u_yt - 0.5 gt^2}

\mathtt{y = u_yt-4.9t^2     \ \ \  since (y_o =0)}

\mathtt{ 1= (u \ sin 40^0)t -4.9 \ t^2        }

\mathtt{1 = 8 sin 40^0 t - 4.9 t^2}

\mathtt{1 = 5.14t - 4.9t^2}

\mathtt{4.9t^2 - 5.14t +1 = 0}

By using the quadratic formula, we have;

\mathtt{ \dfrac{ -b \pm \sqrt{b^2 - 4ac}}{2a}}     }

where;

a = 4.9,   b = -5.14     c = 1

= \mathtt{ \dfrac{ -(-5.14) \pm \sqrt{(-5.14)^2 - 4(4.9)(1)}}{2(4.9)}}     }

= \mathtt{ \dfrac{ 5.14 \pm \sqrt{26.4196 -19.6}}{9.8}}     }

= \mathtt{ \dfrac{ 5.14 \pm \sqrt{6.8196}}{9.8}}     }

= \mathtt{ \dfrac{ 5.14+ \sqrt{6.8196}}{9.8}  \  \ OR \  \  \dfrac{ 5.14- \sqrt{6.8196}}{9.8}}    }

= \mathtt{ \dfrac{ 5.14+ 2.6114}{9.8}  \  \ OR \  \  \dfrac{ 5.14- 2.6114}{9.8}}    }

= \mathtt{ \dfrac{ 7.7514}{9.8}  \  \ OR \  \  \dfrac{ 2.5286}{9.8}}    }

= \mathbf{ 0.791 \  \ OR \  \  0.258}    }

In as much as the ball is traveling upward, then we consider t= 0.258sec.

From equation (1)

\mathtt{x = u_x(0.258)}

\mathtt{x = ucos 40^0 (0.258)}

\mathtt{x = 8 \ cos 40^0 (0.258)}

\mathbf{x = 1.581  \ m}

Thus, the child is 1.581 m far from the fence

6 0
2 years ago
State the Newton 2nd law of motion and also prove that F= ma<br>​
saw5 [17]

Explanation:

F = ma is the formula of Newton's Second Law of Motion. Newton's Second Law of Motion is defined as Force is equal to the rate of change of momentum. For a constant mass, force equals mass times acceleration.

...

3 0
3 years ago
Which of the following electrical components is a temporary electrical energy storage device?
7nadin3 [17]

Answer:

A capacitor

Explanation:

Because it can store electric energy when disconnected from its charging circuit. Commonly used in electronic devices to maintain power supply while batteries change.

Hope this helps! :)

6 0
2 years ago
E=<br> (500.0lm)<br> 4 (100)
drek231 [11]

Answer:

didn't understand your question

7 0
3 years ago
A student places an object with a mass of m on a disk at a position r from the center of the disk. The student starts rotating t
koban [17]

Answer:

The coefficient of static friction between the object and the disk is 0.087.

Explanation:

According to the statement, the object on the disk experiments a centrifugal force due to static friction. From 2nd Newton's Law, we can represent the object by the following formula:

\Sigma F_{r} = \mu_{s}\cdot N = m\cdot \frac{v^{2}}{R} (1)

\Sigma F_{y} = N - m\cdot g = 0 (2)

Where:

N - Normal force from the ground on the object, measured in newtons.

m - Mass of the object, measured in newtons.

g - Gravitational acceleration, measured in meters per square second.

v - Linear speed of rotation of the disk, measured in meters per second.

R - Distance of the object from the center of the disk, measured in meters.

By applying (2) on (1), we obtain the following formula:

\mu_{s}\cdot m\cdot g = m\cdot \frac{v^{2}}{R}

\mu_{s} = \frac{v^{2}}{g\cdot R}

If we know that v = 0.8\,\frac{m}{s}, g = 9.807\,\frac{m}{s^{2}} and R = 0.75\,m, then the coefficient of static friction between the object and the disk is:

\mu_{s} = \frac{\left(0.8\,\frac{m}{s} \right)^{2}}{\left(9.807\,\frac{m}{s^{2}} \right)\cdot (0.75\,m)}

\mu_{s} = 0.087

The coefficient of static friction between the object and the disk is 0.087.

5 0
2 years ago
Other questions:
  • What are the two opposite sides of a magnet called?
    14·2 answers
  • Consider a transformer used to recharge rechargeable flashlight batteries, that has 500 turns in its primary coil, 4 turns in it
    8·1 answer
  • A circular loop has radius R and carries current I2 in a clockwise direction. The center of the loop is a distance D above a lon
    10·1 answer
  • In which layer can air temperatures reach 1,800c
    7·1 answer
  • Products must equal which in a chemical reaction?
    10·1 answer
  • Why is the specific heat of salt solution lower than that of water?
    10·1 answer
  • The flow of air from an ocean or lake to the land is called a ___________________________.
    6·1 answer
  • 1. What is the pressure caused on the ground by an elephant of weight 20000N
    6·1 answer
  • WILL MARK BRAINLIEST!!!!!<br> How is the 3rd law different from the 1st and 2nd laws?
    15·1 answer
  • a person jogs eight complete laps around a 400-m track in a total time of 15.1 min .calculate the average speed, in m/s .
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!