Answer:
The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Explanation:

Where:
Q = heat absorbed or heat lost
c = specific heat of substance
m = Mass of the substance
ΔT = change in temperature of the substance
We have mass of copper = m = 25.3 g
Specific heat of copper = c = 0.385 J/g°C
ΔT = 39°C - 22°C = 17°C
Heat absorbed by the copper :

The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
<span>1. 1 molecule of C6H12O6(dextrose sugar), 2 molecles of c2h6o (ethyl alcohol), 2 molecules of Co2
2. 48 hydrogen atoms </span>
1 electron has charge =1.602* 10⁻¹⁹ C
1 mole of electrons have 1.602* 10⁻¹⁹*6.02*10²³C = 9.64*10⁴ C/1mol
One ion Co²⁺ takes 2e⁻ to become Co⁰.
1 mol of Co²⁺ ions take 2 mole of e⁻ to become Co⁰, so
0.30 mol Co²⁺ ions take mole of 0.60 mol e⁻ to become Co⁰
9.64*10⁴(C/1mol) *0.60 (mol)≈ 5.8 *10⁴ Coulombs.
Correct answer is C
Answer:
The ones with 8 protons
Explanation:
Since there are two of them with 8 protons, we can assume they are the same element. The first 8 proton element has 10 neutrons while the second has 11. This makes them isotopes of one another
Answer: The formula mass (formula weight) of a molecule is the sum of the atomic weights of the atoms in its empirical formula. The molecular mass (molecular weight) of a molecule is its average mass as calculated by adding together the atomic weights of the atoms in the molecular formula.
Hope this helps.... Stay safe and have a great weekend!!!!! :D