It indicates the number of moles of reactants and products
Explanation:
The coefficients in front of the reactants and products in a chemical reaction represents the number of moles of reactants and products.
Every reaction is made up of equal number of moles of reactants and products. Thus, chemical equations are written in such a way to obey the law of conservation of matter.
The numbers used are usually whole numbers and the are very important in stoichiometry.
learn more:
Number of moles brainly.com/question/1841136
#learnwithBrainly
<span>c. Passing electric charge through the reactants Is the answer to you're question.
</span>
Answer: A. Internal energy : May be viewed as the sum of the kinetic and potential energies of the molecules
B. Latent heat: The internal energy associated with the phase of a system.
C. Chemical (bond) energy : The internal energy associated with the atomic bonds in a molecule
D. Nuclear energy : The internal energy associated with the bonds within the nucleus of the atom itself
Explanation:
Internal energy is defined as the total energy of a closed system. Internal energy is the sum of potential energy of the system and the kinetic energy of the system. It is represented by symbol U.
Latent heat is the thermal energy released or absorbed by a thermodynamic system when the temperature of the system does not change. It is thus also called as hidden heat.
Chemical energy is the energy stored in the bonds of molecules.
Nuclear energy is the energy which is stored in the nucleus of an atom called as binding energy within protons and neutrons.
Answer:
441.28 g Oxygen
Explanation:
- The combustion of hydrogen gives water as the product.
- The equation for the reaction is;
2H₂(g) + O₂(g) → 2H₂O(l)
Mass of hydrogen = 55.6 g
Number of moles of hydrogen
Moles = Mass/Molar mass
= 55.6 g ÷ 2.016 g/mol
= 27.8 moles
The mole ratio of Hydrogen to Oxygen is 2:1
Therefore;
Number of moles of oxygen = 27.5794 moles ÷ 2
= 13.790 moles
Mass of oxygen gas will therefore be;
Mass = Number of moles × Molar mass
Molar mass of oxygen gas is 32 g/mol
Mass = 13.790 moles × 32 g/mol
<h3> = 441.28 g</h3><h3>Alternatively:</h3>
Mass of hydrogen + mass of oxygen = Mass of water
Therefore;
Mass of oxygen = Mass of water - mass of hydrogen
= 497 g - 55.6 g
<h3> = 441.4 g </h3>
Answer:

Explanation:
Hello!
In this case, according to the given data of volume, pressure and temperature, it is possible to infer this problem can be solved via the combined gas law:

Thus, regarding the question, we evidence we need V2, but first we make sure the temperatures are in Kelvins:

Then, we obtain:

Best regards!