Answer:
Explanation:
Cubic decimeter is the same unit as liter; so, mole per cubic decimeter is mole per liter, and that is the unit of concentration of molarity. Thus, what is asked is the molarity of the solution. This is how you find it.
1. <u>Take a basis</u>: 1 dm³ = 1 liter = 1,000 ml
2. <u>Calculate the mass of 1 lite</u>r (1,000 ml) of solution:
- density = mass / volume ⇒ mass = density × volume
Here, the density is given through the specific gravity
Scpecific gravity = density of acid / density of water
Take density of water as 1.00 g/ml.
- density of solution = 1.25 g/ml
- mass solution = 1.25 g/ml × 1,000 ml = 1,250 g
3. <u>Calculate the mass of solute</u> (pure acid)
- % m/m = (mass of solute / mass of solution) × 100
- 56 = mass of solute / 1,250 g × 100
- mass of solute = 56 × 1,250g / 100 = 700 g
4. <u>Calculate the number of moles of solute</u>:
- moles = mass in grams / molar mass = 700 g / 70 g/mol = 10 mol
5. <u>Calculate molarity (mol / dm³)</u>
- M = number of moles of solute / liter of solution = 10 mol / 1 liter = 10 mol/liter.
<span>A river can only carry a load if it has adequate energy. When the energy drops below a certain level, therefore, the load is dropped. In the Thalweg (the line of fastest flow), more load is carried, and this is also where the erosion occurs, adding more load. On the inside of a meander, for example, since the Thalweg is on the outside, the velocity on the inside is very low, and so deposition occurs. On the very inside, water merely trickles past. This is incapable of transporting load, so it deposits it until it is able to carry all of it.</span>
P1 * V1 ÷ T1 = P2 * V2 ÷ T2
45 * 1.20 ÷ 314 = 96 * V2 ÷ 420
30,144 * V2 = 22,680
V2 = 22,680 ÷ 30,144
The new volume is approximately 0.75 liter.
I hope I helped