Answer:
Explanation:
13 ) symbol of enthalpy change = Δ H .
14 ) enthalpy change is nothing but heat absorbed or evolved .
During fusion enthalpy change
Δ H .= m Lf , m is mass and Ls is latent heat of fusion
During evaporation, enthalpy change
Δ H .= m Lv , m is mass and Lv is latent heat of evaporation
during temperature rise , enthalpy change
Δ H = m c Δ T
In case of gas , enthalpy change can be calculated by the following relation
Δ H = Δ E + W , Δ E is change in internal energy , W is work done by gas.
15 ) When enthalpy change is negative , that means heat is released to the environment .So reaction is called exothermic .
when heat is absorbed enthalpy change is positive . Reaction is endothermic.
Answer:
D
Explanation:
I believe the answer is D.
Answer:
0.56 liters
Explanation:
First we <u>convert 0.80 grams of O₂ into moles</u>, using its molar mass:
- 0.80 g ÷ 32 g/mol = 0.025 mol
At STP, 1 mol of any given mass occupies 22.4 L. With that information in mind we <u>calculate the volume that 0.025 moles of O₂ gas would occupy</u>:
- 0.025 mol * 22.4 L/mol = 0.56 L
Thus the answer is 0.56 liters.
Answer:
7000 kg*m/s E
Explanation:
Momentum formula: p=mv
m=200kg
v=35 m/s East
p=(200kg)(35m/s E)
m=7000 kg*m/s E
If you want to simplify it further, m=7*10^3 kg*m/s E
We use Charles's Law: V1/T1=V2/T2
Standard Temperature: 0 degree Celsius= 273K
333.0 degrees Celsius= 606K
Set up: (1.00L)/ (273K)= V2/ (606.0K)
⇒ V2= (1.00L)/ (273K)* (606.0K)= 2.22L
Hope this would help :))