<u>Answer</u>:
Final velocity: 1200 m/s
<u>Explanation</u>:
Formula: 
<u>Where</u>:
a = average acceleration
v = final velocity
vo = starting velocity
t = elapsed time
<em>Here the final velocity is unknown which we have to find. The initial is 0 m/s</em>
<em>as it was at rest. The time taken: 150 seconds. Acceleration given 8.0 m/s²</em>
using the formula:


m/s
Answer:
Please find the complete question and its solution in the attached file:
Explanation:
Answer:
6 different forms of the protein could be made.
Explanation:
For the given nematode worm, 6 different forms of the protein could be made. This is because of the alternative splicing that will produce 6 kinds of mRNAs. We have 2 different forms for the exon 4 while we have 3 differen forms for the exon 7. Therefore, we have a total of (2*3) 6 different forms of the protein for the given nematode worm.
The molecular formula is calculated as follows
that is for carbon = 26.7/12= 2.23 moles
hydrogen= 2.24/1=2.24 moles
oxygen= 71.1/16=4.44 moles
<h3> What is molecular formula?</h3>
A chemical formula is a way to describe the chemical ratios of the atoms that make up a specific chemical compound or molecule in chemistry. Chemical element symbols, numbers, and occasionally other symbols, such as parentheses, dashes, brackets, commas, and plus (+) and minus () signs, are used to represent the chemical elements. These can only include one typographic line of symbols, which may also include subscripts and superscripts. A chemical formula has no words and is not the same as the chemical name. A chemical formula does not equal a complete chemical structural formula, despite the fact that it may suggest some basic chemical structures. Chemical formulae are often less powerful than chemical names and structural formulae, and they can only fully describe the structure of the simplest molecules and chemical compounds.
To learn more about molecular formula from the given link:
brainly.com/question/14425592
#SPJ4
Answer:
Explanation:
To determine the molecular formula of the compound, the empirical formula must be determined first. To determine the empirical formula, the percentage of each constituent is divided by its molar mass. This is shown below
Carbon = 60/12 = 5
Oxygen = 32/16 = 2
Hydrogen = 8/1 = 8
The next step is to divide each ratio by the smallest value. The smallest value is 2. It becomes
Carbon = 5/2 = 2.5
It is approximated to 3
Oxygen = 2/2 = 1
Hydrogen = 8/2 = 4
Therefore, the empirical formula is
C3H4O
From the given relative molecular mass of the compound, the molecular formula can be determined