<h3><u>Answer;</u></h3>
- Molecules along the surface of a liquid behave differently than those in the bulk liquid.
- Cohesive forces attract the molecules of the liquid to one another.
- Surface tension increases as the temperature of the liquid rises
<h3><u>Explanation;</u></h3>
- Surface tension is measured as the energy required to increase the surface area of a liquid by a unit of area. The surface tension of a liquid results from an imbalance of intermolecular attractive forces, the cohesive forces between molecules.
- A molecule in the bulk liquid experiences cohesive forces with other molecules in all directions, while a molecule at the surface of a liquid experiences only net inward cohesive forces.
- Surface tension decreases when temperature increases because cohesive forces decrease with an increase of molecular thermal activity.
Avogadro's law states that in every mole of a substance, there are
molecules.
This means that in 2.3 moles, there are 
Answer : The concentration of
and
at equilibrium is, 0.0158 M and 0.00302 M respectively.
Explanation :
First we have to calculate the concentration of 



Now we have to calculate the value of equilibrium constant (K).
The given chemical reaction is:

Initial conc. 0.0163 0.00415 0.00276
At eqm. (0.0163-2x) (0.00415+x) (0.00276+x)
As we are given:
Concentration of
at equilibrium = 0.00467 M
That means,
(0.00415+x) = 0.00467
x = 0.00026 M
Concentration of
at equilibrium = (0.0163-2x) = (0.0163-2(0.00026)) = 0.0158 M
Concentration of
at equilibrium = (0.00276+x) = (0.00276+0.00026) = 0.00302 M
As your question is vague, I am assuming that you are talking Alpha, Beta and Gamma radiation. Out of these three radiation, Gamma radiation is the smallest in size compared to Alpha or Beta, but it has the highest energy levels. Gamma radiation is also known as photons. In other words, photons are light particles.