Answer:
4500.5 nutritional calories per gram
Explanation:
Heat lost by the new candy = heat gained by the bomb calorimeter.
Heat gained by the bomb calorimeter = c×ΔT
where c = heat capacity of the calorimeter = 32.20 KJ/K = 32200 J/K
ΔT = change in temperature = 2.69°C = 2.69 K.
Heat gained by the bomb calorimeter = 32200 × 2.69 = 86618 J
Heat lost by the new candy = heat gained by the bomb calorimeter = 86618 J = 20702.2 calories
4.60 g of the new candy lost this amount of calories by undergoing combustion,
The amount of calories per g = 20702.2 calories/4.6 g = 4500.5 calories per gram
-- 'Ca' (Calcium) is an element.
-- The proton has a positive charge.
-- Nuclear fusion results in the synthesis of atoms of new elements.
-- H₂O (water) is a chemical compound.
-- Nuclear fission is a decay of the nucleus.
-- The atomic number of an element is the number of protons
in each atom of it.
-- I suppose you're using the Greek letter <span>η ('eta', not 'nu')
to represent the neutron.
-- I suppose you're using ' e ' to represent the electron.
</span>
(a) The work done by the applied force is 26.65 J.
(b) The work done by the normal force exerted by the table is 0.
(c) The work done by the force of gravity is 0.
(d) The work done by the net force on the block is 26.65 J.
<h3>
Work done by the applied force</h3>
W = Fdcosθ
W = 14 x 2.1 x cos25
W = 26.65 J
<h3>
Work done by the normal force</h3>
W = Fₙd
W = mg cosθ x d
W = (2.5 x 9.8) x cos(90) x 2.1
W = 0 J
<h3>Work done force of gravity</h3>
The work done by force of gravity is also zero, since the weight is at 90⁰ to the displacement.
<h3> Work done by the net force on the block</h3>
∑W = 0 + 26.65 J = 26.65 J
Thus, the work done by the applied force is 26.65 J.
The work done by the normal force exerted by the table is 0.
The work done by the force of gravity is 0.
The work done by the net force on the block is 26.65 J.
Learn more about work done here: brainly.com/question/8119756
#SPJ1