Well, it's up on top of a pole or pedestal of some sort,
so it has some gravitational potential energy relative to
the ground. In other words, if it somehow became detached
from its structure and fell to the ground, it would make quite
an energetic splat when it got there.
Also, the windmill is at the temperature of the air around it,
which is far from Absolute Zero, so the windmill holds a lot of
thermal (heat) energy.
Then I guess there's the matter of the chemical energy in the
molecules of the material that the windmill is made of, and the
nuclear energy in its atoms.
<span>Crust. The thin solid outermost layer of Earth. ...Asthenosphere. The lower layer of the crust. ...Lithosphere.Plasticity: is solid but still being able to. flow without being a liquid.The cool, rigid outermost layer of the Earth. ...<span>the solid part of the earth consisting of the crust and outer mantle.</span></span>
To solve this problem, we can use the cosine formula for
calculating the length of the displacement:
c^2 = a^2 + b^2 – 2 a b cos θ
where c is the displacement, a = 3.5 km, b = 4.5 km, and θ
is the angle inside the triangle
Since the geeze turned 40° from west to north, so the
angle inside the triangle must be:
θ = 180 – 40 = 140°
c^2 = 3.5^2 + 4.5^2 – 2 (3.5) (4.5) cos 140
c^2 = 56.63
c = 7.53 km
<span>So the magnitude of the displacement is 7.53 km</span>
Answer:
8
Explanation:
Applying,
v = λf................ Equation 1
Where v = velocity/ speed of the wave, λ = wave length of the wave, f = number of waves the person surf in one seconds.
make f the subject of the equation
f = v/λ............ Equation 2
From the question,
Given: v = 1.6 m/s, λ = 24 m
Substitute these values into equation 2
f = 1.6/24
f = 0.0667 wave/seconds.
If,
in one seconds, the person surf a total wave crest of 0.0667
Therefore,
in one hours, he will surf a total wave crest of (0.0667×60×60) = 240 waves crest
He rides for every 30th wave crest,
Hence,
number of wave crest the person surf in one hour = 240/30 = 8
Answer: The horse is moving with a uniform acceleration
Explanation:
According to the described situation, we are dealing with a <u>constant acceleration</u> (also called <u>uniform acceleration</u>), since the horse's velocity is changingn by a constant rate.
Let's prove it:
Firstly we are told the horse follows a straight path. In addition we are given its velocity:
3 m/s, then 4 m/s and 5 m/s
Since acceleration
is defined as the change of velocity in time we can calculate it:
This is the horse's constant acceleration