Explanation:
Given that,
Mass = 0.254 kg
Spring constant [tex[\omega_{0}= 10.0\ N/m[/tex]
Force = 0.5 N
y = 0.628
We need to calculate the A and d
Using formula of A and d
.....(I)
....(II)
Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Hence, This is the required solution.
<span>364N should be your answer.. hope this helps
</span>
Answer:
Explanation:
kinetic energy required = 1.80 MeV
= 1.8 x 10⁶ x 1.6 x 10⁻¹⁹ J
= 2.88 x 10⁻¹³ J
If v be the velocity of proton
1/2 x mass of proton x v² = 2.88 x 10⁻¹³
= .5 x 1.67 x 10⁻²⁷ x v² = 2.88 x 10⁻¹³
v² = 3.45 x 10¹⁴
v = 1.86 x 10⁷ m /s
If V be the potential difference required
V x e = kinetic energy . where e is charge on proton .
V x 1.6 x 10⁻¹⁹ = 2.88 x 10⁻¹³
V = 1.8 x 10⁶ volt .
Answer:
The rate of change of the area when the bottom of the ladder (denoted by
) is at 36 ft. from the wall is the following:

Explanation:
The Area of the triangle is given by
where
(by using the Pythagoras' Theorem) and
is the length of the base of the triangle or the distance between the bottom of the ladder and the wall.
The area is then

The rate of change of the area is given by its time derivative


Product rule
Chain rule


In here we can identify
,
and
.
The result is then

Answer: Option (d) is correct.
Explanation:
Given, 1,152 British thermal units
1 British thermal unit = 1055.06 joules
So, in 1,152 British thermal units there will be :

Hence, from the given options the closest answer is of option (d). So, option (d) is correct.