Answer:
81 °C
Explanation:
I don’t know, I just know :)
By definition, one mole (one gram molecular weight) of any substance, contains Avogadro’s number of particles; atoms if you are discussing an element, or molecules if a compound. Avogadro’s number has been determined by several methods, all of the accepted values lie within a range of +-1% about the value of 6.022045 x 10^23/gm. That is a large number, in this case approximately; 602,204,500,000,000,000,000,000 molecules of glucose.
From the web :v
<span>M(NO3)2 ==> [M2+] + 2 [NO3-]
0.202 M ==> 0.202 M
M(OH)2 ==> [M2+] + 2[OH-]
5.05*10^-18 ===> s + [2s]^2
5.05*10^-18 ===> 0.202 + [2s]^2
5.05*10^-18 = 0.202 * 4s^2
4s^2 = 25*10^-18
s^2 = 6.25*10^-18
s = 2.5*10^-9
So, the solubility is 2.5*10^-9</span>
Answer:
water evaportaes from heat it then turns into a gas then can go into a solid one day and repeat the cycle
Explanation:
Answer:
From least polar covalent to most polar covalent;
S-I< Br-Cl < N-H< Te-O
From most ionic to least ionic
Cs-F> Sr-Cl> Li- N> Al-O
Explanation:
Electro negativity refers to the ability of an atom in a bond to attract the shared electrons of the bond towards itself.
Electro negativity difference between two atoms is a key player in the nature of bond that exists between any two atoms. A large difference in electron negativity leads to an ionic bond while an intermediate difference in electro negativity leads to a polar covalent bond.
Based on electro negativity differences, the bonds in the answer have been arranged in order of increasing polar covalent nature or decreasing ionic nature.