Answer:
The solution is similar to the 2-point form of the equation for a line:
y = (y2 -y1)/(x2 -x1)·x + (y1) -(x1)(y2 -y1)/(x2 -x1)
Step-by-step explanation:
Using the two points, write two equations in the unknowns of the equation of the line.
For example, you can use the equation ...
y = mx + b
Then for the points (x1, y1) and (x2, y2) you have two equations in m and b:
b + (x1)m = (y1)
b + (x2)m = (y2)
The corresponding augmented matrix for this system is ...
![\left[\begin{array}{cc|c}1&x1&y1\\1&x2&y2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Cc%7D1%26x1%26y1%5C%5C1%26x2%26y2%5Cend%7Barray%7D%5Cright%5D)
____
The "b" variable can be eliminated by subtracting the first equation from the second. This puts a 0 in row 2 column 1 of the matrix, per <em>Gaussian Elimination</em>.
0 + (x2 -x1)m = (y2 -y1)
Dividing by the value in row 2 column 2 gives you the value of m:
m = (y2 -y1)/(x2 -x1)
This value can be substituted into either equation to find the value of b.
b = (y1) -(x1)(y2 -y1)/(x2 -x1) . . . . . substituting for m in the first equation
Answer:
Figures are objects that have the same shape, but may have different sizes.
Answer:
After converting Raj will have $31.88 USD
Step-by-step explanation:
1 unit rupee = 0.01594 USD
It is given that,
Raj is visiting the United States and needs to convert 2000 rupees to US dollars
<u>Convert 2000 rupees to USD</u>
To find USD we have to multiply rupees with 0.01594
USD = 2000*0.01594
USD = $31.88
Therefore Raj will have $31.88 USD
If you're using the app, try seeing this answer through your browser: brainly.com/question/2887301—————
Solve the initial value problem:
dy——— = 2xy², y = 2, when x = – 1. dxSeparate the variables in the equation above:

Integrate both sides:


Take the reciprocal of both sides, and then you have

In order to find the value of
C₁ , just plug in the equation above those known values for
x and
y, then solve it for
C₁:
y = 2, when
x = – 1. So,


Substitute that for
C₁ into (i), and you have

So
y(– 2) is

I hope this helps. =)
Tags: <em>ordinary differential equation ode integration separable variables initial value problem differential integral calculus</em>
Answer:
SA=94
Step-by-step explanation:
SA= 2(4*5) + 2(4*3) + 2(5*3)
SA=2(20) + 2(12) + 2(15)
SA=40 + 24 + 30
SA=94