Answer:
Blue light is scattered in all directions by the tiny molecules of air in Earth's atmosphere.
Explanation:
Blue is scattered more than other colors because it travels as shorter, smaller waves. This is why we see a blue sky most of the time. Closer to the horizon, the sky fades to a lighter blue or white.
Answer:
138,516,546.9 horas.
Explanation:
Tenemos que usar la ecuación:
Velocidad = distancia/tiempo
Acá tenemos:
Velocidad = 0.3m/s
distancia = 149597870700 m
y queremos resolver la ecuación para el tiempo:
0.3m/s = 149597870700m/tiempo.
tiempo = 149597870700m/(0.3m/s) = 498,659,569,000 s
y sabemos que una hora tiene 3600 segundos, entonces si queremos transformar de segundos a horas tenemos:
498,659,569,000 s = (498,659,569,000/3600) h = 138,516,546.9 horas.
Answer:
statements <em><u>2, 3, 4, and 7</u></em> are true
Explanation:
Answer:
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Explanation:
The distance travelled on the rough ice is equal to the width of the rough ice.
distance d = 5.0 m
Initial speed u = 9.2 m/s
Final speed v = 5.8 m/s
The time taken to move through the rough ice can be calculated using the equation of motion;
d = 0.5(u+v)t
time t = 2d/(u+v)
Substituting the given values;
t = 2(5)/(9.2+5.8)
t = 2/3 = 0.66667 second
The acceleration is the change in velocity per unit time;
acceleration a = ∆v/t
a = (v-u)/t
Substituting the values;
a = (5.8-9.2)/0.66667
a = -5.099974500127
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Complete Question
A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.
Answer:
The value 
Explanation:
From the question we are told that
The charge on the first sphere is 
The charge on the second sphere is 
The mass of the second charge is 
The distance apart is 
The speed of the second sphere is 
Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here KE is the kinetic energy which is mathematically represented as

substituting value


And U is the potential energy which is mathematically represented as

substituting values


So


Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here
is the kinetic energy which is mathematically represented as

substituting value


And
is the potential energy which is mathematically represented as

substituting values


From the law of energy conservation

So

