Answer:
μ = 0.692
Explanation:
In order to solve this problem, we must make a free body diagram and include the respective forces acting on the body. Similarly, deduce the respective equations according to the conditions of the problem and the directions of the forces.
Attached is an image with the respective forces:
A summation of forces on the Y-axis is performed equal to zero, in order to determine the normal force N. this summation is equal to zero since there is no movement on the Y-axis.
Since the body moves at a constant speed, there is no acceleration so the sum of forces on the X-axis must be equal to zero.
The frictional force is defined as the product of the coefficient of friction by the normal force. In this way, we can calculate the coefficient of friction.
The process of solving this problem can be seen in the attached image.
The colossal brains of people are to a great extent because of one segment the cerebral cortex. The cerebral cortex is the focal point of dialect, rationale, critical thinking, and data preparing. A high bent in these territories would be exceptionally favorable to primitive seekers.
<span>C is the correct answer. Electron microscopes require a vacuum to work, so living cells cannot be seen because they cannot respire. Light microscopes use a ray of visible light instead of a beam of electrons to magnify something so it can be seen by the naked eye. There are two different types of electron microscope: transmission (TEM) and scanning (SEM).</span>
Answer:
-3 m
Explanation:
Displacement is the final position minus the initial position.
Δx = x − x₀
Δx = -3 m − 0 m
Δx = -3 m