Answer: There is not work done at the door because the door did not move.
Explanation: Work is defined as the movement done by a force.
So if you move to apply a force F in an object and you move it a distance D, the work applied on the object is
W = F*D
In this case, the secret agent pushes against the door, so there is a force, but the agent does not move the door, so D = 0, so there is no motion of the door, which implies that there is no work done at the door.
Stress required to cause slip on in the direction [ 1 1 0 ] is 7.154 MPa
<u>Explanation:</u>
Given -
Stress Direction, A = [1 0 0 ]
Slip plane = [ 1 1 1]
Normal to slip plane, B = [ 1 1 1 ]
Critical stress, Sc = 2.92 MPa
Let the direction of slip on = [ 1 1 0 ]
Let Ф be the angle between A and B
cos Ф = A.B/ |A| |B| = [ 1 0 0 ] [1 1 1] / √1 √3
cos Ф = 1/√3
σ = Sc / cosФ cosλ
For slip along [ 1 1 0 ]
cos λ = [ 1 1 0 ] [ 1 0 0 ] / √2 √1
cos λ = 1/√2
Therefore,
σ = 2.92 / 1/√3 1/√2
σ = √6 X 2.92 MPa = 2.45 X 2.92 = 7.154MPa
Therefore, stress required to cause slip on in the direction [ 1 1 0 ] is 7.154MPa
Answer:
1.33×10⁻¹⁰ N
Explanation:
F = GMm / r²
where G is the gravitational constant,
M and m are the masses of the objects,
and r is the distance between them.
F = (6.67×10⁻¹¹ N/m²/kg²) (1000 kg) (2000 kg) / (1000 m)²
F = 1.33×10⁻¹⁰ N
<span>Answer: Answer is The direction of the electric field is always directed in the direction that a positive test charge would be pushed or pulled if placed in the space surrounding the source charge.</span>