Answer: K.E = 0.4 J
Explanation:
Given that:
M = 1.0 kg
h = 0.04 m
K.E = ?
According to conservative of energy
K.E = P.E
K.E = mgh
K.E = 1 × 9.81 × 0.04
K.E = 0.3924 Joule
The kinetic energy of the pendulum at the lowest point is 0.39 Joule
F = 750 N (Force)
d = 10 m (displacement
)
t = 25 s (time)
L = ? (Mechanical work
) = (Energy)
P = ? (Power)
Solve:
L = F × d = 750 × 10 = 7500 Joules
P = L / t = 7500 / 25 = 300 Watts
I believe it she should use the first aid kit next
Answer:
103.57 Km/h
Explanation:
From the question given above, the following data were obtained:
Distance = 725 Km
Time = 7 hours
Speed =?
Speed can be defined as the distance travelled per unit time. Mathematically, it is expressed as:
Speed = Distance /time
With the above formula, we can calculate how fast he will drive (i.e the speed) in order to get there on time. This is illustrated below:
Distance = 725 Km
Time = 7 hours
Speed =?
Speed = Distance /time
Speed = 725 / 7
Speed = 103.57 Km/h
Thus, to get there on time, he will drive with a speed of 103.57 Km/h
Answer:
the train is moving at the speed of v = 1.79 m/s
Explanation:
given,
rain drop is falling vertically down with the speed of = 3.84 m/s
angle of the rain drop = 25°
tan θ =
tan 25° =
v =3.84 × tan 25°
v = 1.79 m/s
hence, the train is moving at the speed of v = 1.79 m/s