Answer:
the kinetic energy of body B is twice the kinetic energy of body A
Explanation:
The kinetic energy of a body is given by
K = ½ m v²
If two objects leave the same point, suppose that at the same height when they reach the ground they have the same velocity.
Therefore if the mass of body b is twice the mass of body A

= ½ (2
) v²
K_{b} = 2 (½ m_{a} v²)
K_{b} = 2 K_{a}
therefore the kinetic energy of body B is twice the kinetic energy of body A
As we know that total work done by a force is given by


so it is product of force and displacement along same direction
as we can write it as

so it must be the product of force and displacement in same directions so correct answer must be
<u>b. is parallel to the displacement of the object</u>
The object that a satellite revolves around is the <em>central body</em> of the system. <em>(C)</em>
For example:
-- The central body of the solar system is the Sun.
-- The central body for TV satellites, GPS satellites, weather satellites, and the International Space Station is the Earth.
-- The central body for Phobos and Deimos is Mars.
This should be a pretty easy question to answer by elimination, when you notice that "Orbit", "Period", and "Rotation" are not "Bodies".
Cancer research, solar panel production and agricultural innovation will all be key areas for nano tech, and so will clothing design, cosmetics manufacturing and many others are some of the new developments.
<u>Explanation:</u>
Nanotechnology is also being applied to or developed for application to a variety of industrial and purification processes. Purification and environmental cleanup applications include the desalination of water, water filtration, wastewater treatment, groundwater treatment, and other nano remediation.
Nanotechnology offers the potential for new and faster kinds of computers, more efficient power sources and life-saving medical treatments. Potential disadvantages include economic disruption and possible threats to security, privacy, health and the environment.
The correct answer is c) 28 m/s.
Let's find the step-by-step solution. The motion of the monkey is an uniformly accelerated motion, with acceleration equal to

. The initial velocity of the monkey is zero, while the distance covered is S=40 m. Therefore, we can use the following relationship to find vf, the final velocity of the monkey:

from which