To do this question, you are best splitting it into two halves: getting to 0, and then 35
Starting at -58, we want to get to 0
-58 + 58 = 0
Then, we get to 35 from 0
0 + 35 = 35
Now, add the two values together
58 + 35 = 93
The difference is 93
Answer:
1
Step-by-step explanation:
Answer:
9
Step-by-step explanation:
3y-(4y+6x)
=3*3-(4*3+6*-2)
=9
Given:
Three integers, a, b, and c, where c is a positive integer.
The product of a and b is 6.
The product of a and c is -4.
The product of b and c is -6.
To find:
The values of a,b and c.
Solution:
According to the given information:
...(i)
...(ii)
...(iii)
From (ii), we get
...(iv)
From (iii), we get
...(v)
Putting
and
in (i), we get
Taking square root on both sides, we get
It is given that c is a positive integer. So, it cannot be negative and the only value of c is
.
Putting
in (iv), we get


Putting
in (v), we get


Therefore, the values of a,b,c are
.

We have to <u>evaluate</u> the given <u>expression</u>.

If we multiple both numerator and denominator by 1 - sin(x), then the value remains same. Let's do that.
![\rm = \sqrt{ \dfrac{[1 - \sin(x)][1 - \sin(x) ]}{[1 + \sin(x)][1 - \sin(x) ]} }](https://tex.z-dn.net/?f=%20%5Crm%20%3D%20%20%5Csqrt%7B%20%5Cdfrac%7B%5B1%20-%20%20%5Csin%28x%29%5D%5B1%20-%20%20%5Csin%28x%29%20%5D%7D%7B%5B1%20%2B%20%20%5Csin%28x%29%5D%5B1%20-%20%20%20%5Csin%28x%29%20%5D%7D%20%7D%20)
![\rm = \sqrt{ \dfrac{[1 - \sin(x)]^{2}}{1- \sin^{2} (x) } }](https://tex.z-dn.net/?f=%20%5Crm%20%3D%20%20%5Csqrt%7B%20%5Cdfrac%7B%5B1%20-%20%20%5Csin%28x%29%5D%5E%7B2%7D%7D%7B1-%20%20%20%5Csin%5E%7B2%7D%20%28x%29%20%7D%20%7D%20)
<u>We know that:</u>


Therefore, <u>the expression becomes:</u>
![\rm = \sqrt{ \dfrac{[1 - \sin(x)]^{2}}{\cos^{2} (x)}}](https://tex.z-dn.net/?f=%20%5Crm%20%3D%20%20%5Csqrt%7B%20%5Cdfrac%7B%5B1%20-%20%20%5Csin%28x%29%5D%5E%7B2%7D%7D%7B%5Ccos%5E%7B2%7D%20%28x%29%7D%7D%20)


