Answer:
At elevated altitudes, any cooking that involves boiling or steaming generally requires compensation for lower temperatures because the boiling point of water is lower at higher altitudes due to the decreased atmospheric pressure.
Explanation:
The force that acts on all objects, all the time on Earth is gravitational force.
The force that surface exert on an object perpendicularly is normal reaction.
<h3>What force acts on all objects, all the time on Earth?</h3>
- Force due to gravity is gravitational pull on objects due to its position on earth's surface.
The force due to gravity on object's is calculated by applying Newton's second law of motion as follows;
F = mg
where;
- m is the mass of the object
- g is acceleration due to gravity
The force that surface exert on an object perpendicularly is normal reaction.
Thus, the force that acts on all objects, all the time on Earth is gravitational force.
Learn more about force of gravity here: brainly.com/question/2537310
The northern lights are shafts or curtains of colorful light that occasionally appear in the night sky. They are one of the numerous astronomical phenomena known as polar lights (aurora Polaris).This phenomenon may be observed in mars.
Earth's magnetic field directs electrons and protons from the sun to the poles, where they excite atmospheric gas molecules and cause them to glow, resulting in the aurora borealis and aurora australis, two nocturnal light displays. You might refer to it as the aurora Universalis on Mars. This is because Mars does not direct the energetic particles from the sun to its poles since it lacks an internal magnetic field. Today, researchers utilizing the MAVEN (Mars Atmosphere and Volatile Evolution) spacecraft find evidence for an aurora that may potentially cover the whole nightside of the planet. Venus lacks a magnetic field, thus it would not experience the same kind of nighttime aurora that we do.
To know more about aurora borealis go here:-
brainly.com/question/12757223
#SPJ4
Hello,
Your answer to this problem is 400/3
Hope this helps!
<span>The ball clears by 11.79 meters
Let's first determine the horizontal and vertical velocities of the ball.
h = cos(50.0)*23.4 m/s = 0.642788 * 23.4 m/s = 15.04 m/s
v = sin(50.0)*23.4 m/s = 0.766044 * 23.4 m/s = 17.93 m/s
Now determine how many seconds it will take for the ball to get to the goal.
t = 36.0 m / 15.04 m/s = 2.394 s
The height the ball will be at time T is
h = vT - 1/2 A T^2
where
h = height of ball
v = initial vertical velocity
T = time
A = acceleration due to gravity
So plugging into the formula the known values
h = vT - 1/2 A T^2
h = 17.93 m/s * 2.394 s - 1/2 9.8 m/s^2 (2.394 s)^2
h = 42.92 m - 4.9 m/s^2 * 5.731 s^2
h = 42.92 m - 28.0819 m
h = 14.84 m
Since 14.84 m is well above the crossbar's height of 3.05 m, the ball clears. It clears by 14.84 - 3.05 = 11.79 m</span>