Answer:
L = 0 m
Therefore, the cricket was 0m off the ground when it became Moe’s lunch.
Explanation:
Let L represent Moe's height during the leap.
Moe's velocity v at any point in time during the leap is;
v = dL/dt = u - gt .......1
Where;
u = it's initial speed
g = acceleration due to gravity on Mars
t = time
The determine how far the cricket was off the ground when it became Moe’s lunch.
We need to integrate equation 1 with respect to t
L = ∫dL/dt = ∫( u - gt)
L = ut - 0.5gt^2 + L₀
Where;
L₀ = Moe's initial height = 0
u = 105m/s
t = 56 s
g = 3.75 m/s^2
Substituting the values, we have;
L = (105×56) -(0.5×3.75×56^2) + 0
L = 0 m
Therefore, the cricket was 0m off the ground when it became Moe’s lunch.