<u>ANY</u> pair of vectors can produce that resultant, as long as ...
If one of the vectors is V₁ = A i + B j . . . . . . where 'A' and 'B' are <u>any</u> two numbers,
then the other one is V₂ = -A i - B j
They cause magnetic storms. A magnetic storm is a fleeting
disturbance of the Earth's magnetosphere. A magnetic storm is caused by a solar
wind shock wave associated with solar coronal mass ejections, coronal holes, or
solar flares. It typically strikes the Earth's magnetic field 24 to
36 hours after the event.
Answer:
Explanation:
Given
Velocity = 388m/s
Height S = 2.89m
Required
Time
Using the equation of motion
S =ut+1/2gt²
2.89 = 388t+1/2(9.8)t²
2.89 = 388t+4.9t²
Rearrange
4.9t²+388t-2.89 =0
Factorize
t = -388±√388²-4(4.9)(2.89)/2(4.9)
t= -388±√(388²-56.644)/9.8
t = -388±387.93/9.8
t =0.073/9.8
t = 0.00744 seconds
To solve this problem we will apply the concepts related to the Doppler Effect, defined as the change in apparent frequency of a wave produced by the relative movement of the source with respect to its observer. Mathematically it can be written as

Here,
= Frequency of the source
= Speed of the sound
= Speed of source
Now the velocity we have that


Then replacing our values,


Therefore the frequency of the observer is 1047.86Hz
Answer:
The constant force is 263.55 newtons
Explanation:
There's a rotational version of the Newton's second law that relates the net torque on an object with its angular acceleration by the equation:
(1)
with τ the net torque and α the angular acceleration. It’s interesting to note the similarity of that equation with the well-known equation F=ma. I that is the moment of inertia is like m in the linear case. The magnitude of a torque is defined as

with F the force applied in some point, r the distance of the point respect the axis rotation and θ the angle between the force and the radial vector that points toward the point the force is applied, in our case θ=90 and sinθ=1, then (1):
(2)
Because the applied force is constant the angular acceleration is constant too, and for constant angular acceleration we have that it's equal to the change of angular velocity over a period of time:

It's important to work in radian units so knowing that 
(3)
The moment of inertia of a disk is:
(4)
with M the mass of the disk and R its radius, then

using the values (3) and (4) on (2)
(2)
Because the force is applied about the rim of the disk r=R=1.50:
