Answer:
3349J/kgC
Explanation:
Questions like these are properly handled having this fact in mind;
Quantity of heat = mcΔ∅
m = mass of subatance
c = specific heat capacity
Δ∅ = change in temperature
m₁c₁(∅₂-∅₁) = m₂c₂(∅₁-∅₃)
m₁ = mass of block = 500g = 0.5kg
c₁ = specific heat capacity of unknown substance
∅₂ = block initial temperature = 50oC
∅₁ = equilibrium temperature of block and water after mix= 25oC
m₂= mass of water = 2kg
c₂ = specific heat capacity of water = 4186J/kg C
∅₃ = intial temperature of water = 20oC
0.5c₁(50-25) = 2 x 4186(25-20)
And we can find c₁ which is the unknown specific heat capacity
c₁ = = 3348.8J/kg C≅ 3349J/kg C
1.) Use the formula to solve -
1/f = 1/do + 1/di; Where f = focal length; 1/do + 1/di
1/f = 1/do + di
1/8 = 1/25 + 1/?
.125 = .04 + 1/di
.125 -.04 = 1/di (transferred .04 to the left side of the equation)
.085/1 = 1/di
.085di/.085 = 1/.085 (multiplied both sides by di and divided both sides by .085)
di = 11.76 or 12
2.) Therefore, 12 cm is the distance from the image to the mirror
Answer:
'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
Explanation:
The question is incomplete, find the complete question in the comment section.
Concave mirrors is an example of a curved mirror. The outer surface of a concave mirror is always coated. On the concave mirror, we have what is called the central axis or principal axis which is a line cutting through the center of the mirror. The points located on this axis are the Pole, the principal focus and the centre of curvature. <em>The focus point is close to the curved mirror than the centre of curvature.</em>
<em></em>
During the formation of images, one of the incident rays (rays striking the plane surface) coming from the object and parallel to the principal axis, converges at the focus point after reflection because all incident rays striking the surface are meant to reflect out. <em>All incident light striking the surface all converges at a point on the central axis known as the focus.</em>
Based on the explanation above, it can be concluded that 'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
I am not sure what kind of answer you are looking for but the start of friendship.