1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ladessa [460]
3 years ago
11

How would I graph y=2/3•+4

Mathematics
1 answer:
Murrr4er [49]3 years ago
3 0

On your y axis mark a dot at +4

now slope is 2/3 rise /run meaning

Rise + 2  (go up 2, because its positive)

Run 3 (go right 3, because you should always go right)  

Do this starting at the dot you made at +4

now when you have done this make a new point

join our two dots with a line

You have your graph

You might be interested in
During February, Kevin will water has ivy every third day, and water his cactus every fifth day. On which date will Kevin first
noname [10]
Ok I’m bout to help you get this answer
5 0
3 years ago
HELP! EXPLAIN! BRAINLIEST, STARS, AND HEARTS IF CORRECT!
WINSTONCH [101]

Answer:

x = 20

Step-by-step explanation:

8 0
3 years ago
How do I evaluate this using trigonometric substitution?<br><br>∫dx/(81x^2+4)^2
Daniel [21]

Answer:

\displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C

General Formulas and Concepts:

<u>Alg I</u>

  • Terms/Coefficients
  • Factor
  • Exponential Rule [Dividing]: \displaystyle \frac{b^m}{b^n} = b^{m - n}

<u>Pre-Calc</u>

[Right Triangle Only] Pythagorean Theorem: a² + b² = c²

  • a is a leg
  • b is a leg
  • c is hypotenuse

Trigonometric Ratio: \displaystyle sec(\theta) = \frac{1}{cos(\theta)}

Trigonometric Identity: \displaystyle tan^2\theta + 1 = sec^2\theta

TI: \displaystyle sin(2x) = 2sin(x)cos(x)

TI: \displaystyle cos^2(\theta) = \frac{cos(2x) + 1}{2}

<u>Calc</u>

Integration Rule [Reverse Power Rule]:                                                                \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

IP [Addition/Subtraction]:                                                             \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

U-Trig Substitution: x² + a² → x = atanθ

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \int {\frac{dx}{(81x^2 + 4)^2}}

<u>Step 2: Identify Sub Variables Pt.1</u>

Rewrite integral [factor expression]:

\displaystyle \int {\frac{dx}{[(9x)^2 + 4]^2}}

Identify u-trig sub:

\displaystyle x = atan\theta\\9x = 2tan\theta \rightarrow x = \frac{2}{9}tan\theta\\dx = \frac{2}{9}sec^2\theta d\theta

Later, back-sub θ (integrate w/ respect to <em>x</em>):

\displaystyle tan\theta = \frac{9x}{2}  \rightarrow \theta = arctan(\frac{9x}{2})

<u>Step 3: Integrate Pt.1</u>

  1. [Int] Sub u-trig variables:                                                                                 \displaystyle \int {\frac{\frac{2}{9}sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta
  2. [Int] Rewrite [Int Prop - MC]:                                                                           \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta
  3. [Int] Evaluate exponents:                                                                                \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4tan^2\theta + 4]^2}} \ d\theta
  4. [Int] Factor:                                                                                                      \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4(tan^2\theta + 1)]^2}} \ d\theta
  5. [Int] Rewrite [TI]:                                                                                              \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4sec^2\theta]^2}} \ d\theta
  6. [Int] Evaluate exponents:                                                                                \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{16sec^4\theta} \ d\theta
  7. [Int] Rewrite [Int Prop - MC]:                                                                          \displaystyle \frac{1}{72} \int {\frac{sec^2\theta}{sec^4\theta} \ d\theta
  8. [Int] Divide [ER - D]:                                                                                         \displaystyle \frac{1}{72} \int {\frac{1}{sec^2\theta} \ d\theta
  9. [Int] Rewrite [TR]:                                                                                            \displaystyle \frac{1}{72} \int {cos^2\theta} \ d\theta
  10. [Int] Rewrite [TI]:                                                                                              \displaystyle \frac{1}{72} \int {\frac{cos(2\theta) + 1}{2}} \ d\theta
  11. [Int] Rewrite [Int Prop - MC]:                                                                          \displaystyle \frac{1}{144} \int {cos(2\theta) + 1} \ d\theta
  12. [Int] Rewrite [Int Prop - A/S]:                                                                          \displaystyle \frac{1}{144} [\int {cos(2\theta) \ d\theta + \int {1} \ d\theta]  

<u>Step 4: Identify Sub Variables Pt.2</u>

Determine u-sub for trig int:

u = 2θ

du = 2dθ

<u>Step 5: Integrate Pt.2</u>

  1. [Ints] Rewrite [Int Prop - MC]:                                                                       \displaystyle \frac{1}{144} [\frac{1}{2} \int {2cos(2\theta) \ d\theta + \int {1 \theta ^0} \ d\theta]
  2. [Int] U-Sub:                                                                                                     \displaystyle \frac{1}{144} [\frac{1}{2} \int {cos(u) \ du + \int {1 \theta ^0} \ d\theta]
  3. [Ints] Integrate [Trig/Int Rule - RPR]:                                                             \displaystyle \frac{1}{144} [\frac{1}{2} sin(u) + \theta + C]
  4. [Expression] Back Sub:                                                                                 \displaystyle \frac{1}{144} [\frac{1}{2} sin(2 \theta) + arctan(\frac{9x}{2}) + C]
  5. [Exp] Rewrite [TI]:                                                                                           \displaystyle \frac{1}{144} [\frac{1}{2}(2sin(\theta)cos(\theta)) + arctan(\frac{9x}{2}) + C]
  6. [Exp] Multiply:                                                                                                 \displaystyle \frac{1}{144} [sin(\theta)cos(\theta) + arctan(\frac{9x}{2}) + C]
  7. [Exp] Back Sub:                                                                                             \displaystyle \frac{1}{144} [sin(arctan(\frac{9x}{2}))cos(arctan(\frac{9x}{2})) + arctan(\frac{9x}{2}) + C]

<u>Step 6: Triangle</u>

Find trig values:

\displaystyle tan\theta = \frac{9x}{2}

\displaystyle \theta = arctan(\frac{9x}{2})

tanθ = opposite / adjacent; solve hypotenuse of right triangle, determine trig ratios:

sinθ = opposite / hypotenuse

cosθ = adjacent / hypotenuse

Leg <em>a</em> = 2

Leg <em>b</em> = 9x

Leg <em>c</em> = ?

  1. Sub variables [PT]:                                                                                         \displaystyle 2^2 + (9x)^2 = c^2
  2. Evaluate exponents:                                                                                      \displaystyle 4 + 81x^2 = c^2
  3. [Equality Property] Square root both sides:                                                  \displaystyle \sqrt{4 + 81x^2} = c
  4. Rewrite:                                                                                                           c = \sqrt{81x^2 + 4}

Substitute into trig ratios:

\displaystyle sin\theta = \frac{9x}{\sqrt{81x^2 + 4}}

\displaystyle cos\theta = \frac{2}{\sqrt{81x^2 + 4}}

<u>Step 7: Integrate Pt.3</u>

  1. [Exp] Sub variables [TR]:                                                                               \displaystyle \frac{1}{144} [\frac{9x}{\sqrt{81x^2 + 4}} \cdot \frac{2}{\sqrt{81x^2 + 4}} + arctan(\frac{9x}{2}) + C]
  2. [Exp] Multiply:                                                                                                 \displaystyle \frac{1}{144} [\frac{18x}{81x^2 + 4} + arctan(\frac{9x}{2}) + C]
  3. [Exp] Distribute:                                                                                             \displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C
3 0
3 years ago
Factor completely 15x2 - 6x + 5xy – 2y
vagabundo [1.1K]

The complete factorization of 15x² - 6x + 5xy - 2y is (5x - 2)(3x + y)

Step-by-step explanation:

If we have an expression of four terms, then we factorize it by using

the grouping factorization

In grouping factorization we do that

1. Collect each two terms with common factors into 2 brackets

2. Take the common factor from each bracket, which make the brackets

    equal each other

3. Take the bracket as a common factor, the answer will be 2 factors

    multiply by each other

∵ The expression is 15x² - 6x + 5xy - 2y

- Take the first 2 terms in a bracket and the last 2 terms in another

  bracket

∴ (15x² - 6x) + (5xy - 2y)

∵ The common factor of 15x² and 6x is 3x

- Divide each term by 3x

∵ 15x² ÷ 3x = 5x

∵ 6x ÷ 3x = 2

∴ (15x² - 6x) = 3x(5x - 2)

∵ The common factor of 5xy and 2y is y

- Divide each term by the common factor y

∵ 5xy ÷ y = 5x

∴ 2y ÷ y = 2

∴ (5xy - 2y) = y(5x - 2)

∴ (15x² - 6x) + (5xy - 2y) = 3x(5x - 2) + y(5x - 2)

∵ The bracket (5x - 2) is a common factor of the two terms

- Divide each term by the common factor (5x - 2)

∵ 3x(5x - 2) ÷ (5x - 2) = 3x

∵ y(5x - 2) ÷ (5x - 2) = y

∴ 3x(5x - 2) + y(5x - 2) = (5x - 2)(3x + y)

∴ 15x² - 6x + 5xy - 2y = (5x - 2)(3x + y)

The complete factorization of 15x² - 6x + 5xy - 2y is (5x - 2)(3x + y)

Learn more:

You can learn more about the factors in brainly.com/question/10771256

#LearnwithBrainly

4 0
3 years ago
A triangle has a base of 7.3 feet and a height of 7 feet. What is the area?<br> ___square feet
svp [43]
The are formula for a triangle is (since a triangle is half a rectangle, and the area formula for a rectangle is b*h)
1/2 * b * h = area

Your equation would be:
1/2* 7.3 * 7 = area
=25.55
4 0
4 years ago
Other questions:
  • Which of the following numbers is classified as an irrational number?
    7·1 answer
  • If 13% of the 250 million adult Americans live in poverty, how many adult Americans live in poverty?
    8·2 answers
  • I forgot how to do these problems can you help me
    15·1 answer
  • Write an equation of the line passing through the points. Write the equation in general form.
    8·1 answer
  • 18 is greater than or equal to negative 2X.
    11·1 answer
  • FREE 10 POINTSS<br> Which rule would translate triangle ABC 5 units to the left and 6 units up?
    9·2 answers
  • to stay healthy we should drink 6 1/2 glasses of water a day. if we follow guidelines how much water would we drink in a full we
    11·1 answer
  • Please help and no links please
    5·1 answer
  • I'll give brainliest please help
    5·1 answer
  • Easy math pls help quick
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!