The solution would be like
this for this specific problem:
<span>
The force on m is:</span>
<span>
GMm / x^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] ->
1
The force on 2m is:</span>
<span>
GM(2m) / (L - x)^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2]
-> 2
From (1), you’ll get M = 2mx^2 / L^2 and from
(2) you get M = m(L - x)^2 / L^2
Since the Ms are the same, then
2mx^2 / L^2 = m(L - x)^2 / L^2
2x^2 = (L - x)^2
xsqrt2 = L - x
x(1 + sqrt2) = L
x = L / (sqrt2 + 1) From here, we rationalize.
x = L(sqrt2 - 1) / (sqrt2 + 1)(sqrt2 - 1)
x = L(sqrt2 - 1) / (2 - 1)
x = L(sqrt2 - 1) </span>
= 0.414L
<span>Therefore, the third particle should be located the 0.414L x
axis so that the magnitude of the gravitational force on both particle 1 and
particle 2 doubles.</span>
The law of superposition helps scientists determine the relative age of a layer of sedimentary rock. the law of superposition is <span>a basic </span>law<span> of geochronology, stating that in any undisturbed sequence of rocks deposited in layers, the youngest layer is on top and the oldest on bottom, each layer being younger than the one beneath it and older than the one above it</span> .
hope this helps :)
To calculate instantaneous speed, we need to divide part of the total distance traveled by time. However, we don't want to use the distance of the entire trip, because that will give us average speed.