Explanation:
using the formula: S=ut+½gt², where u=0, S=?, g=8m/s², t=10seconds.
S=ut+½gt² ("ut" term will cancel because u=0).
=> S= ½gt²
=>S = ½×8×10²
=>S = 4×100
=>S = 400m .
Therefore, the distance traveled by the body in 10s is 400m.
hope this helps you.
Answer:
I wish i saw the field shown to the right
Explanation:
Answer:
v=32.49 m/s
Explanation:
Given that
Distance ,d= 66 m
Initial speed of the car ,u = 0 m/s
Coefficient of friction ,μ = 0.8
Lets take the total mass of the car = m
The acceleration of the car is given as
a = μ g ( g= 10 m/s² )
Now by putting the values in the above equation we get
a= 0.8 x 10 m/s²
a= 8 m/s²
We know that ,final speed is given as
v²= u ²+ 2 a d
Now putting the value
v²=0² + 2 x 8 x 66
v²= 1056
v=32.49 m/s
Answer:
independent variables are variables in mathematical modeling, statistical modeling and experimental science
Answer:
(1) passed through the foil
Explanation:
Ernest Rutherford conducted an experiment using an alpha particle emitter projected towards a gold foil and the gold foil was surrounded by a fluorescent screen which glows upon being struck by an alpha particle.
- When the experiment was conducted he found that most of the alpha particles went away without any deflection (due to the empty space) glowing the fluorescent screen right at the point of from where they were emitted.
- While a few were deflected at reflex angle because they were directed towards the center of the nucleus having the net effective charge as positive.
- And some were acutely deflected due to the field effect of the positive charge of the proton inside the nucleus. All these conclusions were made based upon the spot of glow on the fluorescent screen.