The average velocity of the car for the whole journey is 69.57 km/h.
The given parameters:
- <em>Length of the road, L = 320 km</em>
- <em>Distance covered = 240 km at 75 km/h</em>
- <em>time spent refueling, t₂ = 0.6 hr</em>
- <em>Final velocity, = 100 km/hr</em>
The time spent by the before refueling is calculated as follows;

The time spent by the car for the remaining journey;

The total time of the journey is calculated as follows;

The average velocity of the car for the whole journey is calculated as follows;

Learn more about average velocity here: brainly.com/question/6504879
Answer:
v_f = 24.3 m / s
Explanation:
A) In this exercise there is no friction so energy is conserved.
Starting point. On the roof of the building
Em₀ = K + U = ½ m v₀² + m g y₀
Final point. On the floor
Em_f = K = ½ m v_f²
Emo = Em_g
½ m v₀² + m g y₀ = ½ m v_f²
v_f² = v₀² + 2 g y₀
let's calculate
v_f = √(10² + 2 9.8 25)
v_f = 24.3 m / s
The moon's gravitational pull on Earth causes water to bulge on two sides of the Earth(#3)
https://scijinks.gov/tides/
work done = force * distance moved (in direction of the force)
force= mass* acceleration
force=58.1N
58.1*(5.8*10^4)
=3,369,800 J