At rest because if the distance is not changing, then it is not moving any further, so it must not be moving! The time keeps going no matter what, so the distance, whether it is 0 m or 10,000 km, if the y is horizontal the distance does not change.
Answer:
44.3 m/s
Explanation:
a) Draw a free body diagram of the mass M. There are three forces:
Weight force mg pulling down,
Normal force N pushing perpendicular to the ramp,
and tension force T pulling parallel up the ramp.
Sum of forces in the parallel direction:
∑F = ma
T − Mg sin 30° = 0
T = Mg sin 30°
T = Mg / 2
Draw a free body diagram of the hanging mass m. There are two forces:
Weight force mg pulling down,
and tension force T pulling up.
Sum of forces in the vertical direction:
∑F = ma
T − mg = 0
T = mg
Substitute:
mg = Mg / 2
m = M / 2
M = 2m
b) Velocity of a standing wave in a string is:
v = √(T / μ)
T = mg, and m = 5 kg, so T = (5 kg) (9.8 m/s²) = 49 N. Therefore:
v = √(49 N / 0.025 kg/m)
v = 44.3 m/s
Answer:2800000j
Explanation:
For us to know the kinetic energy of the vehicle,
Where m is the mass
And v is the velocity
Then, K.E=1/2mv^2
While, K.E=1/2×3500×40^2
Therefore, our answer will now be
K.E=2800000j