<span>Let F be the force of gravity, G be the gravitational constant, M be the mass of the earth, m your mass and r the radius of the earth, then:
F = G(Mm / (4(pi)*r^2))
The above expression gives the force that you feel on the earth's surface, as it is today!
Let us now double the mass of the earth and decrease its diameter to half its original size.
This is the same as replacing M with 2M and r with r/2.
Now the gravitational force (F' ) on the new earth's surface is given by:
F' = G(2Mm / (4(pi)(r/2)^2)) = 2G(Mm / ((1/4)*4(pi)*r^2)) = 8G(Mm / (4(pi)*r^2)) = 8F
So:
F' = 8F
This implies that the force that you would feel pulling you down (your weight) would increase by 800%!
You would be 8 times heavier on this "new" earth!</span>
We must remember that the total net force equation at
constant velocity is:
<span>F – Ff = 0</span>
of
F - µN = 0
Using Newton's 2nd Law of Motion:<span>
F = m a
<span>Where,
F = net force acting on the body
m = mass of the body
a = acceleration of the body
Since the cart is moving at a constant velocity, then
acceleration is zero, hence the working equation simplifies to
F = net Force = 0
Therefore,
F - µN = 0
where
µ = coefficient of friction = 0.20
N = normal force acting on the cart = 12 N
Therefore,
F - 0.20(12) = 0
<span>
F = 2.4 N </span></span></span>
Answer:
The canon B hits the ground fast.
Explanation:
Given that,
Speed of cannon A = 85 m/s
Speed of cannon B= 100 m/s
Speed of cannon C = 75 m/s
We need to calculate the cannonballs will hit the ground with the greatest speed
Using conservation of energy
The final kinetic energy of canon depends on initial kinetic energy and potential energy.
The final velocity depends upon initial velocity and initial height.
So, the initial velocity of canon B is high.
Hence, The canon B hits the ground fast.
The correct answer is going to be <span>C, because in the nucleus of an atom there are protons and electrons; which can't move, and are surrounded by electrons on the electrical cloud</span>
Even though the object is weightless, it would need inertia, I.e, you pushing it or any form of transportation. So you would still have to push that 500kg to just keep it moving in space. Say if it were a planet with less gravitational force, it would be weightless.