Answer:
c. detecting the gravitational effect of an orbiting planet (The Wobble"") by looking for the Doppler shifts in the star's spectrum
Explanation:
In a solar system the mass of the star and planets affect each other's orbital movements. The center of gravity of a star and a planet is inside the star. This causes the star to be closer and farther from the Earth at different times. Due to this wobble the star appears to be red shifted when it is farther and blue shifted when it is closer.
When the mass of the planet is high, like a hot Jupiter it causes more wobble i.e., change in radial velocity. This makes it easier to detect the planet. The earliest hot Jupiter found by this method is the planet 51 Pegasi b.
Answer:
Their efforts would be expressed in units of Joules per second
Explanation:
The unit of their efforts can be derived from the formula of power which is given by the product of mass, acceleration and distance (the product is energy with unit joules) divided by time taken to complete the task (unit is seconds)
Therefore, the unit of their efforts would be joules per second
Um ok so you subtract 2 on both side the plug in 6
Answer:
c) 2.02 x 10^16 nuclei
Explanation:
The isotope decay of an atom follows the equation:
ln[A] = -kt + ln[A]₀
<em>Where [A] is the amount of the isotope after time t, k is decay constant, [A]₀ is the initial amount of the isotope</em>
[A] = Our incognite
k is constant decay:
k = ln 2 / Half-life
k = ln 2 / 4.96 x 10^3 s
k = 1.40x10⁻⁴s⁻¹
t is time = 1.98 x 10^4 s
[A]₀ = 3.21 x 10^17 nuclei
ln[A] = -1.40x10⁻⁴s⁻¹*1.98 x 10^4 s + ln[3.21 x 10^17 nuclei]
ln[A] = 37.538
[A] = 2.01x10¹⁶ nuclei remain ≈
<h3>c) 2.02 x 10^16 nuclei</h3>
Answer:A converging lens is thickest in the middle and causes parallel light rays to converge through the focal point on the opposite side of the lens. A diverging lens is thinner in the middle and causes parallel light rays to diverge away from the focal point on the same side of the lens.
Explanation: