Answer:
Intensity = 11.56W/m²
The energy flowing through the given area is 4.55 J
Explanation:
The expression for the intensity of the electromagnetic wave is,

Here,
is the permittivity of the free space,
is the electric field amplitude and
c is the speed of the light.
substitute
⁸m/s for c
8.85×10 −12 C²
/N⋅m² for 
and 93.3 V/m for 

The expression for the energy is,
E = I×A×t
Here, I is the intensity of the electromagnetic wave,
A is the area, and
t is the time.
Substitute
11.56W/m² for I
0.0287m ² for A
13.7s for t

The energy flowing through the given area is 4.55 J
F=ma
m=300g= 0.3kg
a= -0.205i +0.700j m/s2 = <-0205, 0.7>m/s2
Thus, F = 0.3<-0.205, 0.7> N
F = <-0.0615, 0.21> N
= -0.0615i N +0.2100j N
<h3>
Answer:</h3>
Vacuum
<h3>
Explanation:</h3>
Concept being tested: Waves and types of waves
To answer the question we need to define both electromagnetic waves and mechanical waves.
- Waves can be classified as either electromagnetic waves and mechanical waves based on whether they require a material medium for transmission or not.
- Electromagnetic waves do not require a material medium for transmission and can travel through a vacuum.
- Mechanical waves, on the other hand, are waves that require a material medium for transmission.
What are examples of electromagnetic waves and mechanical waves?
- Examples of electromagnetic waves include gamma rays, radio waves, visible light, etc.
- Examples of mechanical waves include sound waves and water waves.
Therefore, the answer to our question is;
- Electromagnetic waves are not mechanical waves, which means they can travel in a vacuum.