Answer:
a = 603.59 m/s^2
Explanation:
from the data given . the rate of change in magnetic field is as follow

from the faraday's law of induction , the expression for the induced emf in region of radius r as follow




electric field at point P_1 as follow



from newton 2nd law of motion, the acceleration of proton is
F = ma
qE = ma


a = 603.59 m/s^2
Answer:yes
Explanation:
Work is done on an object when an applied force causes the object to move in the same direction as the force
it is A hope it is useful.
First choice: the inability of current technology to capture
large amounts of the
Sun's energy
Well, it's true that large amounts of it get away ... our 'efficiency' at capturing it is still rather low. But the amount of free energy we're able to capture is still huge and significant, so this isn't really a major problem.
Second choice: the inability of current technology to store
captured solar
energy
No. We're pretty good at building batteries to store small amounts, or raising water to store large amounts. Storage could be better and cheaper than it is, but we can store huge amounts of captured solar energy right now, so this isn't a major problem either.
Third choice: inconsistencies in the availability of the resource
I think this is it. If we come to depend on solar energy, then we're
expectedly out of luck at night, and we may unexpectedly be out
of luck during long periods of overcast skies.
Fourth choice: lack of
demand for solar energy
If there is a lack of demand, it's purely a result of willful manipulation
of the market by those whose interests are hurt by solar energy.