The basic principles that apply to circuits is that electrons must receive energy from a source, and electrons transfer energy to perform some useful function.
<h3 /><h3>What is circuit?</h3>
Individual electronic components, like resistors, transistors, are connected by metallic wires or traces by which the electric current can flow to form a circuit design.
The basic principles that apply to circuits will be;
1. Electrons must receive energy from a source.
2. Electrons transfer energy to perform some useful function.
Hence, option 1 and 2 are correct.
To learn more about the circuit, refer to the link;
brainly.com/question/21505732
#SPJ1
Answer:
DS = 13865.7[J/K]
Explanation:
We can calculate the energy of the rock, like the potential energy relative to the lake level. Which can be calculated by means of the following expression of the potential energy:
![E_{p}=m*g*h\\\\where:\\m = mass = 2000[kg]\\h = elevation = 200 [m]\\g = gravity = 9.81[m/s^2]](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5C%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%202000%5Bkg%5D%5C%5Ch%20%3D%20elevation%20%3D%20200%20%5Bm%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%5Bm%2Fs%5E2%5D)
Therefore:
![E_{p}=2000*9.81*200\\E_{p}=3924000 [J]\\](https://tex.z-dn.net/?f=E_%7Bp%7D%3D2000%2A9.81%2A200%5C%5CE_%7Bp%7D%3D3924000%20%5BJ%5D%5C%5C)
This energy is transformed into thermal energy.
we shall remember that isothermal heat transfer processes are internally reversible, so the entropy change of a system during one of these processes can be determined, by the following expression.
![DS=\frac{Q}{T}\\ where:\\DS = entropy change [J/K]\\Q = Heat transfer [J]\\T = temperature [K]](https://tex.z-dn.net/?f=DS%3D%5Cfrac%7BQ%7D%7BT%7D%5C%5C%20where%3A%5C%5CDS%20%3D%20entropy%20change%20%5BJ%2FK%5D%5C%5CQ%20%3D%20Heat%20transfer%20%5BJ%5D%5C%5CT%20%3D%20temperature%20%5BK%5D)
T = 5 + 278 = 283[K]
DS = 3924000 / 283
DS = 13865.7[J/K]
100% C . By size and distance
Torque acting dowward = 6 x 0.5 = 3 Nm
Torque acting to the right = 5 x 1 = 5 Nm
5 - 3 = 2 Nm
inertia = 1/2 mr^2
0.5 x 10 x 1^2 = 5 kg-m^2
2/5 = alpha = 0.4 rad /s^2
Hope this helps
Option (a) is correct.
Falling objects accelerate as they approach the ground.This is because of the force of gravity acting on the falling objects. so the velocity of these objects increases continuously as they approach the ground. the acceleration acting on the falling objects is a constant ( close to the surface of earth) and is called as acceleration due to gravity denoted by g. value of g=9.8 m/s².