<em>T</em><em>he</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>-</em><em>3</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>⤴</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>:</em><em>)</em>
Answer:
1.3 * 10^5
Step-by-step explanation:
Answer:
-a^2 + -a + 12
Step-by-step explanation:
Expand the following:
(3 - a) (a + 4)
(3 - a) (a + 4) = (3) (a) + (3) (4) + (-a) (a) + (-a) (4):
-a a + 3 a - 4 a + 3 4
3×4 = 12:
-a a + 3 a - 4 a + 12
-a a = -a^2:
-a^2 + 3 a - 4 a + 12
Grouping like terms, -a^2 + 3 a + 4 (-1) a + 12 = -a^2 + (3 a - 4 a) + 12:
-a^2 + (3 a - 4 a) + 12
3 a - 4 a = -a:
Answer: -a^2 + -a + 12
Answer:
yes
Step-by-step explanation:
Answer:
B = 1.875
Step-by-step explanation:
given that A varies directly as B and inversely as C then the equation relating them is
A =
← k is the constant of variation
to find k use the condition A = 12 when B = 3 and C = 2 , then
12 =
( multiply both sides by 2 to clear the fraction )
24 = 3k ( divide both sides by 3 )
8 = k
A =
← equation of variation
when A = 10 and C = 1.5 , then
10 =
( multiply both sides by 1.5 )
15 = 8B ( divide both sides by 8 )
1.875 = B