1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novosadov [1.4K]
3 years ago
9

You wish to produce an emf of 41.0 mV using an inductor whose inductance is 13.0 H. You start with a current of 1.50 mA through

the inductor and increase the current at a steady rate. What is the current through the inductor at the end of 2.60 s
Physics
1 answer:
Molodets [167]3 years ago
6 0

Answer:

The current through the inductor at the end of 2.60s is 9.7 mA.

Explanation:

Given;

emf of the inductor, V = 41.0 mV

inductance of the inductor, L = 13 H

initial current in the inductor, I₀ = 1.5 mA

change in time, Δt = 2.6 s

The emf of the inductor is given by;

V = L\frac{di}{dt} \\\\V = \frac{L(I_1-I_o)}{dt} \\\\L(I_1-I_o) = V*dt\\\\I_1-I_o = \frac{V*dt}{L}\\\\I_1 =  \frac{V*dt}{L} + I_o\\\\I_1 = \frac{41*10^{-3}*2.6}{13} +1.5*10^{-3}\\\\I_1 = 8.2*10^{-3} + 1.5*10^{-3}\\\\I_1 = 9.7 *10^{-3} \ A\\\\ I_1 = 9.7 \ mA

Therefore, the current through the inductor at the end of 2.60 s is 9.7 mA.

You might be interested in
I need help with these Physics problems​
adoni [48]

Answer:

1. 3 m

2. 27 s

Explanation:

1. "A car traveling at +33 m/s sees a red light and has to stop.  If the driver can accelerate at -5.5 m/s², how far does it travel?"

Given:

v₀ = 33 m/s

v = 0 m/s

a = -5.5 m/s²

Unknown: Δx

To determine the equation you need, look for which variable you don't have and aren't solving for.  In this case, we aren't given time and aren't solving for time.  So look for an equation that doesn't have t in it.

Equation: v² = v₀² + 2aΔx

Substitute and solve:

(0 m/s)² = (33 m/s)² + 2(-5.5 m/s²) Δx

Δx = 3 m

2. "A plane starting from rest at one end of a runway accelerates at 4.8 m/s² for 1800 m.  How long did it take to accelerate?"

Given:

v₀ = 0 m/s

a = 4.8 m/s²

Δx = 1800 m

Unknown: t

Equation: Δx = v₀ t + ½ a t²

Substitute and solve:

1800 m = (0 m/s) t + ½ (4.8 m/s²) t²

t ≈ 27 s

4 0
3 years ago
What is the massof the largest ruby?
alexandr402 [8]
I think the answer is 2283g
4 0
3 years ago
Which type of electromagnetic radiation may damage central nervous system
Furkat [3]

Answer:

microwaves

Explanation:

microwaves do emit radiation, technically speaking, but it's not the DNA-damaging radiation we're used to hearing about. Microwaves, along with radio waves from (you guessed it) radio and cell phone towers, are types of non-ionizing radiation.

5 0
3 years ago
Read 2 more answers
Telephone signals are often transmitted over long distances by microwaves. What is the frequency of microwave radiation with a w
amm1812

Answer:

1) f= 8.6 GHz

2) t= 0.2 ms

Explanation:

1)

  • Since microwaves are electromagnetic waves, they move at the same speed as the light in vacuum, i.e. 3*10⁸ m/s.
  • There exists a fixed relationship between the frequency (f) , the wavelength (λ) and the propagation speed in any wave, as follows:

        v = \lambda * f (1)

  • Replacing by the givens, and solving for f, we get:

       f =\frac{c}{\lambda} =\frac{3e8m/s}{0.035m} = 8.57e9 Hz (2)

⇒     f = 8.6 Ghz (with two significative figures)

2)

  • Assuming that the microwaves travel at a constant speed in a straight line (behaving like rays) , we can apply the definition of average velocity, as follows:

       v =\frac{d}{t} (3)

       where v= c= speed of light in vacuum = 3*10⁸ m/s

       d= distance between mountaintops = 52 km = 52*10³ m

  • Solving for t, we get:

       t = \frac{d}{c} = \frac{52e3m}{3e8m/s} = 17.3e-5 sec = 0.173e-3 sec = 0.173 ms (4)

       ⇒  t = 0.2 ms (with two significative figures)

6 0
2 years ago
The work done to compress a spring with a force constant of 290.0 N/m a total of 12.3 mm is: a) 3.57 J b) 1.78 J c) 0.0219 J d)
iren2701 [21]

Answer:

Work done, W = 0.0219 J

Explanation:

Given that,

Force constant of the spring, k = 290 N/m

Compression in the spring, x = 12.3 mm = 0.0123 m

We need to find the work done to compress a spring. The work done in this way is given by :

W=\dfrac{1}{2}kx^2

W=\dfrac{1}{2}\times 290\times (0.0123)^2

W = 0.0219 J

So, the work done by the spring is 0.0219 joules. Hence, this is the required solution.

7 0
3 years ago
Other questions:
  • A medicine ball has a mass of 5 kg and is thrown with a speed of 2 m/s. what is its kinetic energy?
    8·1 answer
  • where F is the magnitude of the gravitational attraction on either body, m1 and m2 are the masses of the bodies, r is the distan
    5·1 answer
  • A 0.5 m diameter wagon wheel consists of a thin rim having a mass of 7 kg and six spokes, each with a mass of 1.2 kg. 1.2 kg 7 k
    15·1 answer
  • A thin flake of mica ( n = 1.58 ) is used to cover one slit ofa double slit interference arrangement. The central point on thevi
    9·1 answer
  • A ball drops some distance and gains 30 J of kinetic energy. How much gravitational potential energy did the ball start with? Do
    12·1 answer
  • Which one of the following represents the number of units of each substance
    5·1 answer
  • if C is The vector sum of A and B C = A + B What must be true about The directions and magnitudes of A and B if C=A+B? What must
    8·2 answers
  • Does a compressed spring transfer elastic energy to its surroundings?
    12·1 answer
  • Which can be observed both on Earth and in an accelerating ship in space that is free from the effect of any gravitational field
    7·2 answers
  • A ball X of mals 1 kg travelling at 2 m/s has a
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!