Answer:
28.57 Mpc
Explanation:
This question is going to be solved by applying Hubble's Law.
This Hubble's Law is actually an observation in physical cosmology. This observation makes it clear that galaxies are moving away from the Earth, and are doing so at speeds proportional to their distance. This essentially means that the farther they are from the Earth, the faster they are moving away from Earth.
It is represented by this formula
v = H(0)D, where
v = speed
H(0) = Constant of proportionality, or otherwise, Hubble's constant.
D = Distance to a galaxy
Applying the given parameters to the formula, we have
v = H(0).D
D = v / H(0)
D = 2000 / 70
D = 28.57 Mpc
Answer:
p_{f} = 6 m / s
Explanation:
We can solve this exercise using conservation of momentum. For this we define a system formed by the two balls, so that the forces during the collision have been intense and the moment is preserved
Initial instant. Before the crash
p₀ = m v +0
Final moment. Right after the crash
= (m + m) v_{f}
how the moment is preserved
p₀ = p_{f}
m v = 2 m v_{f}
v_{f} = v / 2
we calculate
v_{f} = 12/2
p_{f} = 6 m / s
Answer:
a) 


b) 

c)

Explanation:
We have:
m: is the ball's mass = 1.5 kg
v₀: is the initial speed = 15 m/s
g: is the gravity acceleration = 9.81 m/s²
a) In the initial position we have:
h: is the height = 0
The potential energy is given by:

The kinetic energy is:

And the mechanical energies:

b) At 5 m above the initial position we have:
h = 5 m
The potential energy is:

Now, to find the kinetic energy we need to calculate the speed at 5 m:



And the mechanical energies:
c) At its maximum height:
: is the final speed = 0

Now, the potential, kinetic and mechanical energies are:

I hope it helps you!
Answer:
Explanation:
Given
acceleration is given by

where 

Also acceleration is given by








at 





when air drag is neglected maximum height reached is


Answer:
The kinetic energy of the particle will be 12U₀
Explanation:
Given that,
A particle is launched from point B with an initial velocity and reaches point A having gained U₀ joules of kinetic energy.
Constant force = 12F
According to question,
The kinetic energy is
....(I)
Constant force = 12F
A resistive force field is now set up ,
Resistive force is given by,

When the particle moves from point B to point A then,
We need to calculate the kinetic energy
Using formula for kinetic energy

Put the value of 

Now, from equation (I)

Hence, The kinetic energy of the particle will be 12U₀.