Answer:

Now,buyantant force

so;




Now,



And now,



Hence that,specific density of a given body is 3
please mark me as brainliest, please
Answer:
time required after impact for a puck is 2.18 seconds
Explanation:
given data
mass = 30 g = 0.03 kg
diameter = 100 mm = 0.1 m
thick = 0.1 mm = 1 ×
m
dynamic viscosity = 1.75 ×
Ns/m²
air temperature = 15°C
to find out
time required after impact for a puck to lose 10%
solution
we know velocity varies here 0 to v
we consider here initial velocity = v
so final velocity = 0.9v
so change in velocity is du = v
and clearance dy = h
and shear stress acting on surface is here express as
= µ 
so
= µ
............1
put here value
= 1.75×
× 
= 0.175 v
and
area between air and puck is given by
Area =
area =
area = 7.85 ×
m²
so
force on puck is express as
Force = × area
force = 0.175 v × 7.85 × 
force = 1.374 ×
v
and now apply newton second law
force = mass × acceleration
- force = 
- 1.374 ×
v = 
t = 
time = 2.18
so time required after impact for a puck is 2.18 seconds
The answer is A. Polarized in a vertical plane
If positioned correctly, a polarized lenses can block all reflected light from horizontal surface such as road
Answer:
553.1m
Explanation:
When an object moves at constant velocity we can express this movement like V=x/t, where V is the velocity, x is the displacement and t is the time spent on it.
In that way, the expression x=V.t give us the displacement from t=0s until t=51s, but we have to sum the initial distance from the point A.
x=242m +V.t = 242m + (6.1m/s x 51s) = 553.1m
Since each time trial is the same the average will be the direct answer, and the formula for velocity is distance divided by time, therefore it will come out to, 1.92307692. Whatever your teacher what the rounding process to be will vary but the straight up answer is there.