Answer:
The maximum power density in the reactor is 37.562 KW/L.
Explanation:
Given that,
Height = 10 ft = 3.048 m
Diameter = 10 ft = 3.048 m
Flux = 1.5
Power = 835 MW
We need to calculate the volume of cylinder
Using formula of volume

Put the value into the formula


We need to calculate the maximum power density in the reactor
Using formula of power density

Where, P = power density
E = energy
V = volume
Put the value into the formula


Hence, The maximum power density in the reactor is 37.562 KW/L.
Answer:
Decreases by
times
Explanation:
The intensity of a sound is defined as the energy of the sound that is flowing in an unit time through the unit area which is in the direction that is perpendicular to the direction of the sound waves movement.
The intensity of energy is described by the inverse square law. It states that the intensity varies inversely with the distance square of the distance.
In other words, the sound intensity decreases as inversely proportional to the squared of the distance. i.e. 
In the context when the distance was 3 m, the intensity of the sound was = 
But when the distance became 6 cm or 0.06 m, the sound intensity decreases by = 
=
times
Answer:
so, why we have to find here..
<h3>stay safe healthy and happy.</h3>
Answer:
There are total eight planets in the solar system and the average distance from the sun to each planet in increasing order is given below.
Explanation:
The average distance from the sun is listed below in increasing order.
1. Mercury - It is the most closet planet to Sun, 57 million km
2. Venus - 108 million km
3. Earth - 150 million km
4. Mars - 228 million km
5. Jupiter - 779 million km
6. Saturn - 1.43 billion km
7. Uranus - 2.88 billion km
8. Neptun - It is the most farthest from the Sun, 4.50 billion km
This question apparently wants you to get comfortable
with E = m c² . But I must say, this question is a lame
way to do it.
c = 3 x 10⁸ m/s
E = m c²
1.03 x 10⁻¹³ joule = (m) (3 x 10⁸ m/s)²
Divide each side by (3 x 10⁸ m/s)²:
Mass = (1.03 x 10⁻¹³ joule) / (9 x 10¹⁶ m²/s²)
= (1.03 / 9) x (10⁻¹³ ⁻ ¹⁶) (kg)
= 1.144 x 10⁻³⁰ kg . (choice-1)
This is roughly the mass of (1 and 1/4) electrons, so it seems
that it could never happen in nature. The question is just an
exercise in arithmetic, and not a particularly interesting one.
______________________________________
Something like this could have been much more impressive:
The Braidwood Nuclear Power Generating Station in northeastern
Ilinois USA serves Chicago and northern Illinois with electricity.
<span>The station has two pressurized water reactors, which can generate
a net total of 2,242 megawatts at full capacity, making it the largest
nuclear plant in the state.
If the Braidwood plant were able to completely convert mass
to energy, how much mass would it need to convert in order
to provide the total electrical energy that it generates in a year,
operating at full capacity ?
Energy = (2,242 x 10⁶ joule/sec) x (86,400 sec/day) x (365 da/yr)
= (2,242 x 10⁶ x 86,400 x 365) joules
= 7.0704 x 10¹⁶ joules .
How much converted mass is that ?
E = m c²
Divide each side by c² : Mass = E / c² .
c = 3 x 10⁸ m/s
Mass = (7.0704 x 10¹⁶ joules) / (9 x 10¹⁶ m²/s²)
= 0.786 kilogram ! ! !
THAT should impress us ! If I've done the arithmetic correctly,
then roughly (1 pound 11.7 ounces) of mass, if completely
converted to energy, would provide all the energy generated
by the largest nuclear power plant in Illinois, operating at max
capacity for a year !
</span>