1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miskamm [114]
3 years ago
7

Particle A of charge 3.30 10-4 C is at the origin, particle B of charge -6.24 10-4 C is at (4.00 m, 0), and particle C of charge

1.06 10-4 C is at (0, 3.00 m). We wish to find the net electric force on C. (a) What is the x component of the electric force exerted by A on C?
Physics
1 answer:
gulaghasi [49]3 years ago
4 0

Answer:

a) E_T=134,484\frac{N}{C}\hat{i}+149954.66\frac{N}{C}\hat{j}

b) zero

Explanation:

a) To find the electric field at point C, you sum the contribution of the electric fields generated by the other two charges. The total electric field at C is given by:

E_T=E_1+E_2

E1: electric field of charge 1

E2: electric field of charge 2

It is necessary to calculate the x and y components of both E1 and E2. You take into account the direction of the fields based on the charge q1 and q2:

E_1=k\frac{q_1}{r_{1,3}}[cos\theta\hat{i}+sin\theta \hat{j}]\\\\E_2=k\frac{q_2}{r_{2,3}}[cos\phi\hat{i}-sin\phi \hat{j}]\\\\

r13: distance between charges 1 and 3

r12: charge between charges 2 and 3

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2

Thus, you first calculate the distance r13 and r23, and also the angles:

r_{1,3}=3.00m\\\\r_{2,3}=\sqrt{(3.00m)^2+(4.00m)^2}=5.00m\\\\\theta=90\°\\\\\phi=tan^{-1}(\frac{4.00}{3.00})=53.13\°

Next, you replace the values of all parameters in order to calculate E1 and E2:

E_1=(8.98*10^9Nm^2/C^2)(\frac{3.30*10^{-4}C}{(3.00m)^2})\hat{j}\\\\E_1=329266.66\frac{N}{C}\\\\E_2=(8.98*10^9Nm^2/C^2)(\frac{6.24*10^{-4}C}{(5.00m)^2})[cos53.13\°\hat{i}-sin(53.13\°)\hat{j}]\\\\E_2=224140.8[0.6\hat{i}-0.8\hat{j}]=134484\hat{i}-179312\hat{j}

finally, you obtain for ET:

E_T=134,484\frac{N}{C}\hat{i}+(329266.66-179312)\frac{N}{C}\hat{j}\\\\E_T=134,484\frac{N}{C}\hat{i}+149954.66\frac{N}{C}\hat{j}

b) The x component of the force exerted by A on C is zero because there is only a vertial distance between them. Thus, there is only a y component force.

You might be interested in
HELP QUICK WILL GIVE BRAINLEST!!!!
Romashka-Z-Leto [24]
Hello!

The statement that <span>describes the solar feature shooting off into space labeled C is An envelope of plasma surrounding the Sun. 

This is called the Solar Corona. It is the outmost layer of the Sun's atmosphere. The Corona is hotter than the visible surface of the Sun. (1 000 000 - 3 000 000 K). It is composed of Plasma (The fourth state of the matter, similar to the gaseous state, but with electrically charged particles). All structural details of the Solar Corona are derived from the Magnetic Field of the Sun. 

Have a nice day!</span>
3 0
3 years ago
Read 2 more answers
Determine the mechanical energy of this object: 1-kg ball rolls on the ground at 2 m/s
Fiesta28 [93]
The potential energy would be zero. Only kinetic energy is present in this case. To find out what the answer is we do the equation: mv^2/2 soo...

KE =mv^2/2 
KE= 1(2^2)/2 which the answer will come up by 2 Joules.
5 0
3 years ago
Two thin concentric spherical shells of radii r1 and r2 (r1 &lt; r2) contain uniform surface charge densities V1 and V2, respect
Lyrx [107]

Answer:

Answer is explained in the explanation section below.

Explanation:

Solution:

We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.

So,

a)  0 < r < r1 :

We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.

Hence, E = 0 for r < r1

b)  r1 < r < r2:

Electric field =?

Let, us consider the Gaussian Surface,

E x 4 \pi r^{2}  = \frac{Q1}{E_{0} }

So,

Rearranging the above equation to get Electric field, we will get:

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   }

Multiply and divide by r1^{2}

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   } x \frac{r1^{2} }{r1^{2} }

Rearranging the above equation, we will get Electric Field for r1 < r < r2:

E= (σ1 x r1^{2}) /(E_{0} x r^{2})

c) r > r2 :

Electric Field = ?

E x 4 \pi r^{2}  = \frac{Q1 + Q2}{E_{0} }

Rearranging the above equation for E:

E = \frac{Q1+Q2}{E_{0} . 4 \pi. r^{2}   }

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   } + \frac{Q2}{E_{0} . 4 \pi. r^{2}   }

As we know from above, that:

\frac{Q1}{E_{0} . 4 \pi. r^{2}   } =  (σ1 x r1^{2}) /(E_{0} x r^{2})

Then, Similarly,

\frac{Q2}{E_{0} . 4 \pi. r^{2}   } = (σ2 x r2^{2}) /(E_{0} x r^{2})

So,

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   } + \frac{Q2}{E_{0} . 4 \pi. r^{2}   }

Replacing the above equations to get E:

E = (σ1 x r1^{2}) /(E_{0} x r^{2}) + (σ2 x r2^{2}) /(E_{0} x r^{2})

Now, for

d) Under what conditions,  E = 0, for r > r2?

For r > r2, E =0 if

σ1 x r1^{2} = - σ2 x r2^{2}

4 0
3 years ago
Calculate the average velocity of a dancer who moves 5 m toward the left of the stage over the course of 15 s. ** Velocity = dis
Alex73 [517]

Answer:

B

Explanation:

Velocity=disp/time

V=5m/15s

V=1/3 m/s

3 0
4 years ago
What the 3 law of newton mean
Masteriza [31]
Newtons third law of motion states that for every action, there is an equal an opposite reaction. This means that the force on back on something is going to be equal in size and opposite in direction. 
3 0
3 years ago
Other questions:
  • What three forms of kinetic energy can a polyatomic molecule have?
    10·1 answer
  • An isolated conductor has a net charge of +12.0 × 10- 6 c and a cavity with a particle of charge q = +3.70 × 10-6
    8·1 answer
  • g Larry , Moe, and Curly are pushing on a 25 kg crate. The crate is sitting on a horizontal floor, and the coefficient of kineti
    11·1 answer
  • PLEASE HLEP ME ASAP
    15·1 answer
  • Should we focus on the p-value instead of the alpha level?
    15·1 answer
  • 14 kilometers per hour to meters per second
    14·1 answer
  • Work done by friction?
    12·2 answers
  • Se quiere calcular la viscosidad de un líquido por el método de Oswald y se obtienen los siguientes resultados:
    15·1 answer
  • An illustration of a ball sitting at the top of a hill of height labeled h Subscript 1 Baseline = 2 m. A the the bottom of the h
    8·2 answers
  • Discuss the path that light takes through the human eye
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!