Coastal erosion has depleted a large portion of South Louisiana's wetlands along the coastline in swamps and marshes mainly due to storm surges. But other factors also contributed to this erosion. Canals and waterways dug through the marshes and swamps for the oil industry is one factor. Man-made levees erected to provide protection to residents living adjacent to the river is another major cause. Large scale logging especially in the early 1900's also damaged the wetlands.
I dont know from option
Because SI Unit of acceleration is m/s^2
Answer:
z = 93.2 m
Explanation:
We can appreciate that this expression is equivalent to the linear motion equation with constant acceleration
v² = v₀² + 2 a d
If we make a term-to-term comparison with the expression obtained, they are equivalent
u² = v² + 2 a z
From here we can clear the position
2 a z = u² –v²
z = (u² –v²) / 2 a
Let's calculate
For the speed to reduce the acceleration must be negative
z = (0 - 21.8²) / 2(- 2.55)
z = 93.2 m
Explanation:What is centripetal acceleration?
Can an object accelerate if it's moving with constant speed? Yup! Many people find this counter-intuitive at first because they forget that changes in the direction of motion of an object—even if the object is maintaining a constant speed—still count as acceleration.
Acceleration is a change in velocity, either in its magnitude—i.e., speed—or in its direction, or both. In uniform circular motion, the direction of the velocity changes constantly, so there is always an associated acceleration, even though the speed might be constant. You experience this acceleration yourself when you turn a corner in your car—if you hold the wheel steady during a turn and move at constant speed, you are in uniform circular motion. What you notice is a sideways acceleration because you and the car are changing direction. The sharper the curve and the greater your speed, the more noticeable this acceleration will become. In this section we'll examine the direction and magnitude of that acceleration.
The figure below shows an object moving in a circular path at constant speed. The direction of the instantaneous velocity is shown at two points along the path. Acceleration is in the direction of the change in velocity, which points directly toward the center of rotation—the center of the circular path. This direction is shown with the vector diagram in the figure. We call the acceleration of an object moving in uniform circular motion—resulting from a net external force—the centripetal acceleration
a
c
a
c
a, start subscript, c, end subscript; centripetal means “toward the center” or “center seeking”.
Velocity is a vector quantity. Therefore, while specifying the magnitude of velocity, we also need to mention in what direction its vector *point* in space.
Here, velocity of plane is "500 m/s towards west"