1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldenfox [79]
3 years ago
15

To demonstrate the tremendous acceleration of a top fuel dragracer, you attempt to run your car into the back of a dragster that

is "burning out" at the red light before the start of a race.(Burning out means spinning the tires at high speed to heat thetread and make the rubber sticky.)
You drive at a constant speed of v0 toward the stopped dragster, not slowingdown in the face of the imminent collision. The dragster driversees you coming but waits until the last instant to put down thehammer, accelerating from the starting line at constant
acceleration,a. Let the time at which thedragster starts to accelerate be t=0.
A) What is tmax, the longest time after thedragster begins to accelerate that you can possibly run into theback of the dragster if you continue at your initial velocity?
B) Assuming that the dragster has started at the last instantpossible (so your front bumper almost hits the rear of thedragster at t = tmax), find your distance from thedragster when he started. If you calculate positions on the way tothis solution,
choose coordinates so that the positionof the drag car is 0 at t = 0. Remember that you are solvingfor a distance (which is a magnitude, and can never be negative),not a position (which can be negative).
Physics
1 answer:
noname [10]3 years ago
4 0

Answer:

a. 2v₀/a   b. 2v₀/a  

Explanation:

a. Since you are moving with a constant velocity v₀, the distance, s you cover in time = t max is s = v₀t.

Since the dragster starts from rest with an acceleration, a, using

s' = ut + 1/2at² where u = 0 and s' = distance moved by dragster

s' = 0t + 1/2at²

s' = 1/2at²

Since the distance moved by me and the dragster must be the same,

s = s'

v₀t. =  1/2at²

v₀t. - 1/2at² = 0

t(v₀ - 1/2at) = 0

t= 0 or v₀ - 1/2at = 0

t= 0 or v₀ = 1/2at

t= 0 or t = 2v₀/a  

So the maximum time tmax = 2v₀/a

b. Since the distance covered by me to meet the dragster is s = v₀t in time, t = tmax which is also my distance from the dragster when it started. So, my distance from the dragster when it started is s =  v₀(2v₀/a)

= 2v₀/a  

You might be interested in
3 physical adaptations of a frog
ICE Princess25 [194]
Water, land. breath using skin and lungs
6 0
3 years ago
Crude oil coal and peat are examples of fossil fuels name another one<br><br>​
Nikolay [14]

Answer:

petroleum and Natural gas are fossil fuels

Explanation:

3 0
3 years ago
Why do some scientists think that Irr II galaxies have irregular, distorted shapes?
laila [671]
They believe the distortions happened when two galaxies collided.

Hope This Helps :)
3 0
3 years ago
Suppose someone pours 0.250 kg of 20.0ºC water (about a cup) into a 0.500-kg aluminum pan with a temperature of 150ºC. Assume th
Troyanec [42]

Answer : The temperature when the water and pan reach thermal equilibrium short time later is, 59.10^oC

Explanation :

In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.

q_1=-q_2

m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)

where,

c_1 = specific heat of aluminium = 0.90J/g^oC

c_2 = specific heat of water = 4.184J/g^oC

m_1 = mass of aluminum = 0.500 kg = 500 g

m_2 = mass of water = 0.250 kg  = 250 g

T_f = final temperature of mixture = ?

T_1 = initial temperature of aluminum = 150^oC

T_2 = initial temperature of water = 20^oC

Now put all the given values in the above formula, we get:

500g\times 0.90J/g^oC\times (T_f-150)^oC=-250g\times 4.184J/g^oC\times (T_f-20)^oC

T_f=59.10^oC

Therefore, the temperature when the water and pan reach thermal equilibrium short time later is, 59.10^oC

8 0
3 years ago
Hooke's law describes a certain light spring of unstretched length 31.8 cm. when one end is attached to the top of a doorframe a
lubasha [3.4K]

Answer:

Explanation:

extension in the spring = 40.4 - 31.8 = 8.6 cm = 8.6 x 10⁻² m .

kx = mg

k is spring constant , x is extension , m is mass

k x 8.6 x 10⁻² = 7.52 x 9.8

k = 856.93 N/m

=  857 x 10⁻³ KN /m

b ) Both side is pulled by force of 188 N .

Tension in spring = 188N

kx = T

856.93 x = 188

x = .219.38 m

= 21.938 cm

= 21.9 cm .

length of spring = 31.8 + 21.9

= 53.7 cm .

6 0
2 years ago
Other questions:
  • Equation need answers not quite sure
    9·1 answer
  • What force is required to accelerate a body with a mass of 15 kilograms at a rate of 8 m/s²?
    7·1 answer
  • Which of the following activities is most likely to result in nutrient pollution? a. cutting down trees b. pouring motor oil dow
    15·2 answers
  • Which is true
    9·2 answers
  • The lowest energy state of a quantized system is
    12·1 answer
  • A block of weight mg sits on an inclined plane as shown in (Figure 1) . A force of magnitude F1 is applied to pull the block up
    13·1 answer
  • A 0.145 kg baseball is thrown horizontally at 15 m/s from a platform, so that it starts at 5.2 m above the ground. How much has
    7·1 answer
  • 4. I drop a pufferfish of mass 5 kg from a height of 5.5 m onto an upright spring of total length 0.5 m and spring constant 3000
    15·1 answer
  • What are the first three harmonics of a note produced on a 0.31 m long violin string if the waves on this string have a speed of
    15·1 answer
  • A hurricanes energy comes from?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!