1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
guapka [62]
3 years ago
11

Mrs. Lane took a survey of the types of pants her students were wearing. She collected the data at the right. What percent of he

r students were wearing shorts
Mathematics
1 answer:
Nadya [2.5K]3 years ago
6 0

Answer:

It is always important to go through the given problem first to get a concept of the requiremement. Then all the information's available from the question has to be noted down in such a manner that there would be no need to look at the question while solving.

Total number of students wearing jeans = 10

Total number of students wearing shorts = 9

Total number of students wearing capris = 2

Then the total number of students surveyed by Mrs Lane = (10 + 9 + 2)

                                                                                           = 21

Now percentage of students wearing shorts = (9/21) * 100

                                                                      = (3/7) * 100

                                                                      = 300/7

                                                                      = 42.85 percent

So a total percentage of 42.85% of the students were wearing shorts.

Step-by-step explanation:

You might be interested in
Khalil with me six times as many baskets at John during basketball practice
ycow [4]

Answer:

Step-by-step explanation:

how many baskets does john have?

8 0
3 years ago
Please Help! This is a trigonometry question.
liraira [26]
\large\begin{array}{l} \textsf{From the picture, we get}\\\\ \mathsf{tan\,\theta=\dfrac{2}{3}}\\\\ \mathsf{\dfrac{sin\,\theta}{cos\,\theta}=\dfrac{2}{3}}\\\\ \mathsf{3\,sin\,\theta=2\,cos\,\theta}\qquad\mathsf{(i)} \end{array}


\large\begin{array}{l} \textsf{Square both sides of \mathsf{(i)} above:}\\\\ \mathsf{(3\,sin\,\theta)^2=(2\,cos\,\theta)^2}\\\\ \mathsf{9\,sin^2\,\theta=4\,cos^2\,\theta}\qquad\quad\textsf{(but }\mathsf{cos^2\theta=1-sin^2\,\theta}\textsf{)}\\\\ \mathsf{9\,sin^2\,\theta=4\cdot (1-sin^2\,\theta)}\\\\ \mathsf{9\,sin^2\,\theta=4-4\,sin^2\,\theta}\\\\ \mathsf{9\,sin^2\,\theta+4\,sin^2\,\theta=4} \end{array}

\large\begin{array}{l} \mathsf{13\,sin^2\,\theta=4}\\\\ \mathsf{sin^2\,\theta=\dfrac{4}{13}}\\\\ \mathsf{sin\,\theta=\sqrt{\dfrac{4}{13}}}\\\\ \textsf{(we must take the positive square root, because }\theta \textsf{ is an}\\\textsf{acute angle, so its sine is positive)}\\\\ \mathsf{sin\,\theta=\dfrac{2}{\sqrt{13}}} \end{array}

________


\large\begin{array}{l} \textsf{From (i), we find the value of }\mathsf{cos\,\theta:}\\\\ \mathsf{3\,sin\,\theta=2\,cos\,\theta}\\\\ \mathsf{cos\,\theta=\dfrac{3}{2}\,sin\,\theta}\\\\ \mathsf{cos\,\theta=\dfrac{3}{\diagup\!\!\!\! 2}\cdot \dfrac{\diagup\!\!\!\! 2}{\sqrt{13}}}\\\\ \mathsf{cos\,\theta=\dfrac{3}{\sqrt{13}}}\\\\ \end{array}

________


\large\begin{array}{l} \textsf{Since sine and cosecant functions are reciprocal, we have}\\\\ \mathsf{sin\,2\theta\cdot csc\,2\theta=1}\\\\ \mathsf{csc\,2\theta=\dfrac{1}{sin\,2\theta}\qquad\quad\textsf{(but }}\mathsf{sin\,2\theta=2\,sin\,\theta\,cos\,\theta}\textsf{)}\\\\ \mathsf{csc\,2\theta=\dfrac{1}{2\,sin\,\theta\,cos\,\theta}}\\\\ \mathsf{csc\,2\theta=\dfrac{1}{2\cdot \frac{2}{\sqrt{13}}\cdot \frac{3}{\sqrt{13}}}} \end{array}

\large\begin{array}{l} \mathsf{csc\,2\theta=\dfrac{~~~~1~~~~}{\frac{2\cdot 2\cdot 3}{(\sqrt{13})^2}}}\\\\ \mathsf{csc\,2\theta=\dfrac{~~1~~}{\frac{12}{13}}}\\\\ \boxed{\begin{array}{c}\mathsf{csc\,2\theta=\dfrac{13}{12}} \end{array}}\qquad\checkmark \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2150237


\large\textsf{I hope it helps.}


Tags: <em>trigonometry trig function cosecant csc double angle identity geometry</em>

</span>
8 0
4 years ago
HCF AND LCM of 32 and 48 using the prime factorisation​
torisob [31]

Answer:

Below.

Step-by-step explanation:

32 = 2*2*2*2*2

48 = 2*2*2*2*3

So The GCF = 2*2*2*2 = 16.

LCM = 2*2*2*2*2*3 = 96

3 0
3 years ago
Which of these system of linear equations has no solution
____ [38]

Answer:

A

Step-by-step explanation:

Those two lines are the same. If you divide the second equation by 2, you will end up with the first equation. A system of linear equations cannot have two of the same line.

5 0
3 years ago
Read 2 more answers
What is 8/10-1/8 and 12÷24.12
Yuliya22 [10]
<span>27/40 is the answer to the fraction problem




</span>
3 0
3 years ago
Read 2 more answers
Other questions:
  • 2x to the fourth power + 5x squared + 3, factored
    10·2 answers
  • Which of these debts could possibly be forgiven under Chapter 7 bankruptcy? A.Child support. B.A student loan. C.Alimony. D.A mo
    13·2 answers
  • Order from least to greatest<br> 14,20,15,10,7,12,14,15,10
    14·2 answers
  • Find the difference in simplest form for 3/5-1/7
    10·1 answer
  • PLEASEEE HELPPO :))!!
    9·1 answer
  • Anyone help with this question please..
    12·2 answers
  • I need help with this, please answer right I will give brainelist
    7·1 answer
  • Need help will mark brainliest
    14·1 answer
  • 3 1/4 minus 1 7/8 equals
    12·2 answers
  • 2.943 divided by 2.7
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!