1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sladkaya [172]
3 years ago
5

Find the area of the shape

Mathematics
1 answer:
nydimaria [60]3 years ago
8 0

Answer: 3 pie symbol

Step-by-step explanation:

You might be interested in
Saira is using the formula for the area of a circle to determine the value of LaTeX: \piπ. She is using the expression LaTeX: Ar
lord [1]

Given:

Area of a circle, A=50.265 sq. units.

Radius of circle, r = 4 units.

To find:

The value of π to the nearest thousandth.

Solution:

Formula for area of a circle is

A=\pi r^2

\dfrac{A}{r^2}=\pi

Ar^{-2}=\pi

Now, using Ar^{-2} expression, we can find the value of π.

\pi=50.265904(4)^{-2}

\pi=\dfrac{50.265904}{4^2}

\pi=\dfrac{50.265904}{16}

\pi=3.141619

Approximate the value to the nearest thousandth (three digits after decimal).

\pi\approx 3.142

Therefore, the approximated value of π is 3.142.

8 0
3 years ago
K - 263.48 = 381.09 solve this equation
Sedbober [7]
K-263.48=381.09
we add 263.48 on both sides
k=644.57
7 0
3 years ago
Read 2 more answers
Find the zeros of y = x + 6x- 4 by completing the square.
dsp73

Answer:

\large\boxed{x=-3\pm\sqrt{13}}

Step-by-step explanation:

(a+b)^2=a^2+2ab+b^2\qquad(*)\\\\\\x^2+6x-4=0\qquad\text{add 4 to both sides}\\\\x^2+2(x)(3)=4\qquad\text{add}\ 3^2=9\ \text{to both sides}\\\\\underbrace{x^2+2(x)(3)+3^2}_{(*)}=4+9\\\\(x+3)^2=13\Rightarrow x+3=\pm\sqrt{13}\qquad\text{subtract 3 from both sides}\\\\x=-3\pm\sqrt{13}

8 0
3 years ago
Peter has 3200 yards of fencing to enclose a rectangular area. Find the dimensions of the rectangle that maximize the enclosed a
salantis [7]

Answer:

A = 640000\,yd^{2}

Step-by-step explanation:

Expression for the rectangular area and perimeter are, respectively:

A (x,y) = x\cdot y

3200\,yd = 2\cdot (x+y)

After some algebraic manipulation, area expression can be reduce to an one-variable form:

y = 1600 -x

A (x) = x\cdot (1600-x)

The first derivative of the previous equation is:

\frac{dA}{dx}= 1600-2\cdot x

Let the expression be equalized to zero:

1600-2\cdot x=0

x = 800

The second derivative is:

\frac{d^{2}A}{dx^{2}} = -2

According to the Second Derivative Test, the critical value found in previous steps is a maximum. Then:

y = 800

The maximum area is:

A = (800\,yd)\cdot (800\,yd)

A = 640000\,yd^{2}

8 0
3 years ago
Read 2 more answers
THIS IS URGENT!<br> add 7-9=7+(-9)
Burka [1]

Answer:

-3=3

<h2><em>Hope this helps!!!</em></h2>
7 0
3 years ago
Read 2 more answers
Other questions:
  • Lou eats 6/8 of pizza. what fraction of the pizza is left over?
    7·1 answer
  • Need ANSWER ASAPpppp
    12·2 answers
  • Does anybody possibly know how to help me with this?
    7·2 answers
  • A 12-oz can of soda pop costs eighty-nine cents. A 2.00 L bottle of the same variety of soda pop costs $2.29. How many times mor
    14·1 answer
  • 7 d = how many hours
    10·2 answers
  • What type of function is represented by:
    6·1 answer
  • PLEASE ANSWER ASAP ASAP
    9·2 answers
  • For every $2 Joe earns, Michelle earns $3. If Joe
    15·2 answers
  • Find the x intercept and the y intercept of the graph of the equation <br> 2x+4y=8
    8·1 answer
  • Name the Solid.<br> What is the VOLUME of the solid?<br> Round to the nearest tenth if necessary.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!