The weight of the meterstick is:

and this weight is applied at the center of mass of the meterstick, so at x=0.50 m, therefore at a distance

from the pivot.
The torque generated by the weight of the meterstick around the pivot is:

To keep the system in equilibrium, the mass of 0.50 kg must generate an equal torque with opposite direction of rotation, so it must be located at a distance d2 somewhere between x=0 and x=0.40 m. The magnitude of the torque should be the same, 0.20 Nm, and so we have:

from which we find the value of d2:

So, the mass should be put at x=-0.04 m from the pivot, therefore at the x=36 cm mark.
Answer:
10 km/hr/s
Explanation:
The acceleration of an object is given by

where
v is the final velocity
u is the initial velocity
t is the time
For the car in this problem:
u = 0

t = 6 s
Substituting in the equation,

Answer:
Conservation of momentum.
Momentum is zero after collision, no direction or speed.
Explanation:
Answer:
Normal force = 8.75 N
Explanation:
given,
frictional force between the steel spatula and the Teflon frying pan=0.350 N
coefficient of friction between material =0.04
normal force = ?
using formula,
Frictional force = coefficient of friction × normal force


Normal force = 8.75 N