Answer:
29.4 N/m
0.1
Explanation:
a) From the restoring Force we know that :
F_r = —k*x
the gravitational force :
F_g=mg
Where:
F_r is the restoring force .
F_g is the gravitational force
g is the acceleration of gravity
k is the constant force
xi , x2 are the displacement made by the two masses.
Givens:
<em>m1 = 1.29 kg</em>
<em>m2 = 0.3 kg </em>
<em>x1 = -0.75 m </em>
<em>x2 = -0.2 m </em>
<em>g = 9.8 m/s^2 </em>
Plugging known information to get :
F_r =F_g
-k*x1 + k*x2=m1*g-m2*g
k=29.4 N/m
b) To get the unloaded length 1:
l=x1-(F_1/k)
Givens:
m1 = 1.95kg , x1 = —0.75m
Plugging known infromation to get :
l= x1 — (F_1/k)
= 0.1
Answer:
d = 375 m
Explanation:
The speed of sound is constant in any medium, therefore we can use the uniform motion relationships
v = x / t
x = v t
In this case it indicates that the time since the sound is emitted and received is t = 0.50 s, in this time the sound traveled a round trip distance
x = 2d
2d = v t
d = v t/2
let's calculate
d = 1500 0.5 / 2
d = 375 m
Answer:
You're four sentences should include about how the roller coaster has the most potential energy at the top of the track, and the opposing energy, "kinetic" has the most kinetic energy when going down the hill.
Explanation:
Kinetic - In-Motion.
Potential - Gathering Energy to go into Motion.
( I'll try to answer questions to clear up confusion. )
Answer:
Explanation:
Given:
volume of air in the room,
temperature of the room,
<u>Saturation water vapor pressure at any temperature T K is given as:</u>
<u /><u />
putting T=298 K we have
<u>The no. of moles of water molecules that this volume of air can hold is:</u>
Using Ideal gas law,
is the maximum capacity of the given volume of air to hold the moisture.
Currently we have 80% of n, so the mass of 20% of n:
where;
M= molecular mass of water
is the mass of water that can vaporize further.
Answer:
Amplitude will be equal to 0.091 m
Explanation:
Given mass of the slits = 41 gram = 0.041 kg
Frequency f = 1.65 Hz
So angular frequency
Angular frequency is equal to
Squaring both side
k = 4.40 N/m
For vertical osculation
A = 0.091 m
So amplitude will be equal to 0.0391 m