Are there any options to choose from?
Hey there!
The pathway will resemble a hill , The minimum amount of energy the reagents need to make the complex activated, is the activation energy , The difference in heights of the products and reactants will be equivalent to the difference in energies.:
ΔH = ( -1,023 kj ) - ( - 935,3 kj )
ΔH = -87.7 Kj
Answer:

Explanation:
The balanced equation is
I₂(g) + Br₂(g) ⇌ 2IBr(g)
Data:
Kp = 280
p(IBr) = 0.200 atm
1. Set up an ICE table.
Let p = the initial pressure of IBr. Then

2. Calculate p(I₂)
}
Check:

The mass in grams of NH₃ produced from the reaction is 3.4 g
<h3>Balanced equation</h3>
We'll begin by writing the balanced equation for the reaction. This illustrated below:
N₂ + 3H₂ -> 2NH₃
From the balanced equation above,
1 dm³ of N₂ reacted to produced 2 dm³ NH₃
<h3>How to determine the volume of NH₃ produced</h3>
From the balanced equation above,
1 dm³ of N₂ reacted to produced 2 dm³ NH₃
Therefore,
2.24 dm³ of N₂ will react to produce = 2.24 × 2 = 4.48 dm³ of NH₃
<h3>How to determine the mass of NH₃ produced</h3>
We'll begin by obtained the mole of 4.48 dm³ of NH₃. Details below:
22.4 dm³ = 1 mole NH₃
Therefore,
4.48 dm³ = 4.48 / 22.4
4.48 dm³ = 0.2 mole of NH₃
Finally, we shall determine the mass of NH₃ as follow:
- Molar mass of NH₃ = 17 g/mol
- Mole of NH₃ = 0.2 mole
- Mass of NH₃ =?
Mass = mole × molar mass
Mass of NH₃ = 0.2 × 17
Mass of NH₃ = 3.4 g
Learn more about stoichiometry:
brainly.com/question/13196642
#SPJ1