Answer: Most of the stars in the universe are main sequence stars — those converting hydrogen into helium via nuclear fusion. A main sequence star may have a mass between a third to eight times that of the sun and eventually burn through the hydrogen in its core. Over its life, the outward pressure of fusion has balanced against the inward pressure of gravity. Once the fusion stops, gravity takes the lead and compresses the star smaller and tighter.
Temperatures increase with the contraction, eventually reaching levels where helium is able to fuse into carbon. Depending on the mass of the star, the helium burning might be gradual or might begin with an explosive flash.
Answer:
Explanation:
1 Non-zero digits are always significant.
2 Any zeros between two significant digits are significant.
3 A final zero or trailing zeros in the decimal portion ONLY are significant.
Answer:
hdhhdhhdhgdgdvsgsvsvvsvsvsvsvs
Explanation:
hdhbdbdbdbdbdbxbxbxvxbxbbxbxvxvxvxv
Zwitterion is an ion consists of equal positive and negative charges on the same molecule which make it more stable and has high melting point
p-aminobenzene sulfonic acid contains both acidic (-SO₃H) and basic groups (NH₂), the acidic group will lose one proton to give (-SO₃⁻) and the basic group will gain this proton to give (-NH₃⁺)
The structure is:
second compound
Let molar mass of x is = X
Let molar mass of y is = Y
Moles of x in second compound = Mass / molar mass = 7 / X
Moles of y in second compound = Mass / molar mass = 4.5 / Y
For second compound
7 / X : 4.5/ Y = 1:1
Therefore
X / Y = 7/4.5
Y / X = 4.5/ 7
The mass of x in first compound = 14g
moles of x in first compound = 14/X
Mass of y in first compound = 3
moles of y in first compound = 3 / Y
14 / X : 3/ Y = 14Y / 3X = 14 X 4.5 / 3 X 7 = 3 :1
Thus molar ratio in first compound = moles of x / Moles of y = 3:2
Formula = x3y