QUICK ANSWER
J.J. Thomson's cathode ray experiment was a set of three experiments that assisted in discovering electrons. He did this using a cathode ray tube or CRT. It is a vacuum sealed tube with a cathode and anode on one side.
<em>I</em><em> </em><em>do</em><em> </em><em>not</em><em> </em><em>understand</em><em> </em><em>science</em><em> </em><em>but</em><em> </em><em>if</em><em> </em><em>u</em><em> </em><em>ask</em><em> </em><em>me</em><em> </em><em>I</em><em> </em><em>would</em><em> </em><em>have</em><em> </em><em>no</em><em> </em><em>clue</em><em> </em><em>do</em><em> </em><em>u</em><em> </em><em>get</em><em> </em><em>what</em><em> </em><em>I</em><em> </em><em>mean</em>
Answer: -
Surface Tension
Explanation: -
Surface tension is cohesive force created as a result of hydrogen bonding, that enables a liquid drop to have a minimum surface area.
Due to it being cohesive, the water top surface is concave in nature, allowing us to hence slightly overfill a glass with water.
Due to surface tension, the surface of water behaves like a stretched membrane, allowing dense objects like a length wise steel needle to float on water.
Thus, the hydrogen bonding in water creates __surface tension__, a cohesive force that enables one to slightly overfill a glass with water or allows denser objects, such as a lengthwise steel needle, to float on water
We can use the heat equation,
Q = mcΔT
where Q is the amount of energy transferred (J), m is the mass of the substance (kg), c is the specific heat (J g⁻¹ °C⁻¹) and ΔT is the temperature difference (°C).
Q = 11.2 kJ = 11200 J
m = <span>145 g
</span>c = ?
ΔT = (67 - 22) °C = 45 °C
By applying the formula,
11200 J = 145 g x c x 45 °C
c = 1.72 J g⁻¹ °C⁻¹
Hence, specific heat of benzene is 1.72 J g⁻¹ °C⁻¹.