Answer
is: V<span>an't
Hoff factor (i) for this solution is 1,81.
Change in freezing point from pure solvent to
solution: ΔT =i · Kf · b.
Kf - molal freezing-point depression constant for water is 1,86°C/m.
b - molality, moles of solute per
kilogram of solvent.
</span><span>b = 0,89 m.
ΔT = 3°C = 3 K.
i = </span>3°C ÷ (1,86 °C/m · 0,89 m).
i = 1,81.
Answer:
law of conservation of energy is that a perpetual motion machine of the first kind cannot exist, that is to say, no system without an external energy supply can deliver an unlimited amount of energy to its surroundings
Explanation:
Hope it helps.
Mark me as Brainliest plz!
R1 + R4 = 1430 + 1350 = 2780 = R14 series combination of R1 & R4
R2 + R5 = 1350 + 1150 = 2500 = R25
The circuit has been reduced to 3 resistors in parallel
R314 = 2780 * 1100 / (2780 + 1100) = 788 this is the resistance of the parallel combination of R14 and R3
R31425 = 2500 * 788 / (2500 + 788) = 599 which is the equivalent of the circuit - you can also use the formula for 3 resistors in parallel but this seems simpler
The correct answer is D. Amount of time and area of physical contact between the substances.
Explanation:
Heat transfer refers to the flow of thermal energy or heat between two or more objects. This process involves multiple factors and implies heat from the hottest object goes to the coldest one until there is an equilibrium. To begin, heat transfer depends on the amount of thermal energy in the objects because objects must have a different amount of thermal energy for heat to flow.
Besides this, the amount of energy that flows depends on the time and the contact between the substances of objects. Indeed, objects need to be in contact or close to each other for heat to transfer, and the time needs to be enough for the process to occur. For example, if you place a pot over the fire just for a few seconds it is likely the heat transferred is minimal, which does not occur if you leave the pot more time. At the same time if the pot is in close contact with fire more heat will be transferred.-