1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
baherus [9]
3 years ago
14

Suppose a thin conducting wire connects two conducting spheres. A negatively charged rod is brought near one of the spheres, the

wire between them is cut, and the charged rod is taken away. Which one of the following is true? a. The spheres will attract each other. b. The spheres will repel each other. c. There will be no electrostatic force between the spheres
Physics
1 answer:
dangina [55]3 years ago
4 0

Answer:

a. The spheres will attract each other.

Explanation:

When two conducting spheres are connected by a conducting wire and a negatively charged rod is brought near it then this will induce opposite (positive) charge at the nearest point on the sphere and by the conservation of charges there will also be equal amount of negative charge on the farthest end of this conducting system this is called induced polarization.

  • When the conducting wire which joins them is cut while the charged rod is still in proximity to of one of the metallic sphere then there will be physical separation of the two equal and unlike charges on the spheres which will not get any path to flow back and neutralize.
  • Hence the two spheres will experience some amount of electrostatic force between them.
You might be interested in
The two basic units of weight in the metric system is the___?
Alika [10]

Answer:

The two basic units of weight in the metric system is the?

The gram and kilogram is the Correct Answer...

3 0
3 years ago
An ultrasound unit is being used to measure a patient's heartbeat by combining the emitted 2.0 MHz signal with the sound waves r
alexandr402 [8]
Hi there, 
for this question we have:
Signal 2.0 MHz = Emitted so we can call it f_e
and we need the Reflected = f_{r}
In this question, we have a source which goes to the heart and a reflected which comes back from the heart and we need the speed of the reflected.
So you should know that the speed of reflected is lower than the source(Emitted). 
we also know: ΔBeat frequency(max) = 560 Hz = f_{b}
so we have: 
f_{e} - f_{r} = f_{b}
so frequency of Reflected is: 
2.0 × 10^6 Hz - 560 Hz = 1.99 × 10^6 Hz = f_{r}
now you know that Lambda = v/f 
so if we find the lambda with our Emitted then we can find v with the Reflected: 
Lambda = 1540(m/s) / 2.0 × 10^6 Hz = 7.7 × 10^-4 m 
=> v_{max} = (lambda)(f_{r} 
=> 7.7 × 10^-4m (1.99 × 10^6Hz) = 1532 m/s 
so the v_{max} is equal to 1532 m/s :)))
This question is solved by two top teachers as fast as they could :))
I hope this is helpful
have a nice day

8 0
3 years ago
Diffraction supports the:<br><br> A. wave theory of light.<br><br> B. particle theory of light.
Artemon [7]
The answer is a hope its helps you
8 0
2 years ago
Read 2 more answers
Two metra trains approach each other on separate but parallel tracks. one has a speed of 90 km/hr, the other 80 km/hr. initially
Gennadij [26K]

The trains take <u>57.4 s</u> to pass each other.

Two trains A and B move towards each other. Let A move along the positive x axis and B along the negative x axis.

therefore,

v_A=90 km/h\\ v_B=-80 km/h

The relative velocity of the train A with respect to B is given by,

v_A_B=v_A-v_B\\ =(90km/h)-(-80km/h)\\ =170km/h

If the train B is assumed to be at rest, the train A would appear to move towards it with a speed of 170 km/h.

The trains are a distance d = 2.71 km apart.

Since speed is the distance traveled per unit time, the time taken by the trains to cross each other is given by,

t= \frac{d}{v_A_B}

Substitute 2.71 km for d and 170 km/h for v_A_B

t= \frac{d}{v_A_B}\\ =\frac{2.71 km}{170 km/h} \\ =0.01594 h

Express the time in seconds.

t=(0.01594h)(3600s/h)=57.39s

Thus, the trains cross each other in <u>57.4 s</u>.

6 0
2 years ago
A racecar accelerates from rest at 6.5 m/s2 for 4.1 s. How fast will it be going at the end of that time?
Pie

Answer:

The final velocity of the car is 26.65 m/s.

Explanation:

Given;

acceleration of the racecar, a = 6.5 m/s²

initial velocity of the car, u = 0

time of motion, t = 4.1 s

The final velocity of the car is given by;

v = u + at

where;

v is the final velocity of the car

suvstitute the givens

v = 0 + (6.5)(4.1)

v = 26.65 m/s.

Therefore, the final velocity of the car is 26.65 m/s.

6 0
2 years ago
Other questions:
  • What is the standard metric unit of power
    11·1 answer
  • What is the purpose of a valve?
    14·2 answers
  • I’m having trouble figuring out how to study for my science test , it’s based off of everything we’ve learned but I’m afraid the
    8·1 answer
  • Earth Science help needed
    15·2 answers
  • if a cat is running at a constant speed of 10km/h for 5 s, what is its average speed and what is its instantaneous speed at 4 s?
    12·1 answer
  • A fixed 15.3-cm-diameter wire coil is perpendicular to a magnetic field 0.77 T pointing up. In 0.20 s , the field is changed to
    12·1 answer
  • how much heat is needed to melt 2.5 kg of lead? The latent heat of fusion for lead is 5.85 Kcal/kg. The latent heat of vaporizat
    5·1 answer
  • Diffraction of light is the __________ of light as it passes through the Edges of a barrier or a slit.
    11·1 answer
  • Calculate the magnetic field and its direction at point P, which is 2.0 cm away from the top wire and 4.0 cm from the bottom wir
    14·1 answer
  • Please show work with the answer and thank you
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!