Answer:
3) D: 31 m/s
4) D: 84.84 metres
Explanation:
3) Initial velocity along the x-axis is;
v_x = v_o•cos θ
Initial velocity along the y-axis is;
v_y = v_o•sin θ
Plugging in the relevant values, we have;
v_x = 31 cos 60
v_x = 31 × 0.5
v_x = 15.5 m/s
Similarly,
v_y = 31 sin 60
v_y = 31 × 0.8660
v_y = 26.85 m/s
Thus, magnitude of the initial velocity is;
v = √(15.5² + 26.85²)
v ≈ 31 m/s
4) Formula for horizontal range is;
R = (v² sin 2θ)/g
R = (31² × sin (2 × 60))/9.81
R = 84.84 m
Answer:
The gravitational force is 3.509*10^17 times larger than the electrostatic force.
Explanation:
The Newton's law of universal gravitation and Coulombs law are:

Where:
G= 6.674×10^−11 N · (m/kg)2
k = 8.987×10^9 N·m2/C2
We can obtain the ratio of these forces dividing them:
--- (1)
The mass of the moon is 7.347 × 10^22 kilograms
The mass of the earth is 5.972 × 10^24 kg
And q1=q2=Na*e=(6.022*10^23)*(1.6*10^-19)C=9.635*10^4 C
Replacing these values in eq1:

Therefore

This means that the gravitational force is 3.509*10^17 times larger than the electrostatic force, when comparing the earth-moon gravitational field vs 1mol electrons - 1mol protons electrostatic field
Answer:
Acceleration = 1.428m/s2
Tension = 102.85N
Explanation:
The detailed solution is attached
The vibration caused by p waves is a volume changes, alternatimg from compression to expansión in the direction that the waves is traveling.
Potential energy is defined by formula

here
m = mass
g = acceleration due to gravity
h = height
Now here two different stones are located at same height
while mass of stone A is twice that of stone B
so here we can say potential energy of A is

Similarly potential energy of B is

now if we take the ratio of two energy

so we can say potential energy of stone A is two times the potential energy of B