When a customer has a 6 pound Chihuahua, the cost that will be charged is $5.00.
<h3>How to calculate the cost?</h3>
a. If a customer has a 6 pound Chihuahua, how much would you charge?
It should be noted that from the information given, for dogs that weigh 0 to 15 pounds, the amount charged is $5.00.
b. If a customer has a 65 pound Labrador, how much would you charge?
It should be noted that for dogs over 45 pounds, the amount that's charged is $9.00
There, the amount charged will be $9.00.
Learn more about cost on:
brainly.com/question/25109150
#SPJ1
We are going to make simultaneous equations.
x will be our $3 ice cream and y will be our $5 ice cream
Equation1 ---- x + y = 50 (the sum of all the ice creams they sell)
Equation 2 ---- 3x + 5y = 180 Sum of all the $3 and $5 ice creams is $180
Since we can't solve for both variables we will put one of the variables in terms of the other.
Take x+y=50 and subtract y from both sides. (I could have done subtracted x - it did not matter). Now we have x= ₋ y +50 (negative y +50)
Now I am going to take equation 2 and replace the x with -y +50
3 (-y +50) + 5y = 180
Now I will use the distributive law on the 3 and what's in the parentheses:
-3y + 150 + 5y = 180
Now I will combine like terms (the -3y and the 5y)
2y + 150 = 180
Now subtract 150 from both sides of the equation
2y = 30
Divide both sides by 2
and get y= 15 They sold 15 ice creams that cost $5 each
Since equation 1 is x+y=50 we can replace y with 15
x + 15 = 50 Now subtract 15 from both sides x = 35
Since x represents the $3 ice creams, they sold 35 of those.
Check:
35 X 3 = $105
15 x 5 = + <u>75
</u> $180
Answer:
Step-by-step explanation:
A) The constant of proportionality in terms of minutes per bracelet is
15/3 = 5 minutes per bracelet
B) The constant of proportionality represents man hour rate
C) let k = constant of proportionality, t = time in minutes and b = number of bracelets produced. Therefore,
t = kb
D) the constant of proportionality in terms of number of bracelets per minute is
3/15 = 1/5
E) The constant of proportionality represents production rate
F) let k = constant of proportionality, t = time in minutes and b = number of bracelets produced. Therefore,
b = kt
G) The constants of proportionality are reciprocals
H) Two equations are equivalent if they have the same solution. They are not equivalent. By inputting the different values of k, the solutions will always be the same. Therefore, they are equivalent.
Answer:
Option D is answer.
Step-by-step explanation:
Hey there!
Given;
f(x) = 10/9 X + 11
Let f(X) be "y".
y = (10/9) X + 11
Interchange "X" and "y".
x = (10/9) y + 11
or, 9x = 10y + 99
or, y = (9x-99)/10
Therefore, f'(X) = (9x-99)/10.
<u>Hope</u><u> it</u><u> helps</u><u>!</u>
Answer: The quantity of the water received by each student = 3.75 liters.
Step-by-step explanation:
Given: Total water = 18.75 liters
Total students =5
If each student in the group used the same amount of water for their experiment, then the quantity of the water received by each student = 

The quantity of the water received by each student = 3.75 liters.