In proving that C is the midpoint of AB, we see truly that C has Symmetric property.
<h3>What is the proof about?</h3>
Note that:
AB = 12
AC = 6.
BC = AB - AC
= 12 - 6
=6
So, AC, BC= 6
Since C is in the middle, one can say that C is the midpoint of AB.
Note that the use of segment addition property shows: AC + CB = AB = 12
Since it has Symmetric property, AC = 6 and Subtraction property shows that CB = 6
Therefore, AC = CB and thus In proving that C is the midpoint of AB, we see truly that C has Symmetric property.
See full question below
Given: AB = 12 AC = 6 Prove: C is the midpoint of AB. A line has points A, C, B. Proof: We are given that AB = 12 and AC = 6. Applying the segment addition property, we get AC + CB = AB. Applying the substitution property, we get 6 + CB = 12. The subtraction property can be used to find CB = 6. The symmetric property shows that 6 = AC. Since CB = 6 and 6 = AC, AC = CB by the property. So, AC ≅ CB by the definition of congruent segments. Finally, C is the midpoint of AB because it divides AB into two congruent segments. Answer choices: Congruence Symmetric Reflexive Transitive
Learn more about midpoint from
brainly.com/question/6364992
#SPJ1
Answer:
c
Step-by-step explanation:
hope u enjoy
It's m. All you have to do is distribute
Answer:
50
Step-by-step explanation:
would it be 50 because you the q to the power of 2 is 2q. Then you would subtract to the other side of the equation so it would be -100=-2q. After you would divided the -2 in -2q on both sides and -100/-2 is 50. So your answer is q=50
Answer:
my guess is c
Step-by-step explanation:
bxnxnnsnsndnjdjdjd