Answer:
Answer is 
Step-by-step explanation:
To find the interval of x. Use our equations to equal each other.



Integrate.
![\frac{-x^3}{3}+x^2\\(\frac{-2^3}{3}+2^2)-[\frac{-0^3}{3}+0^2]\\-\frac{8}{3} +4-0\\-\frac{8}{3}+\frac{12}{3}  =4/3](https://tex.z-dn.net/?f=%5Cfrac%7B-x%5E3%7D%7B3%7D%2Bx%5E2%5C%5C%28%5Cfrac%7B-2%5E3%7D%7B3%7D%2B2%5E2%29-%5B%5Cfrac%7B-0%5E3%7D%7B3%7D%2B0%5E2%5D%5C%5C-%5Cfrac%7B8%7D%7B3%7D%20%2B4-0%5C%5C-%5Cfrac%7B8%7D%7B3%7D%2B%5Cfrac%7B12%7D%7B3%7D%20%20%3D4%2F3)
Using Desmos I have Graphs of both of the equations you have provided. The problem asks us to find the shaded region between those curves/equations.
Proof Check your interval of x.
  
        
             
        
        
        
Answer:
20
Step-by-step explanation:
This sequence follows a pattern of doubling then subtracting by two. The last action was 12 to 10, which is subtracting by two, so the next must be multiplying by 2. 
 
        
             
        
        
        
-6x-x^2-8 = -(x+2) x (x+4)
(This is if you are factoring the expression)