He should a step-up transformer with k=220/120=1.83 so output coil must have 240*1.83=440 turns
That is the Sigma Symbol. It’s the addition of a sequence of numbers; the result is the sum of the total. if numbers are added sequentially from left to right, any intermediate result is a partial sum, prefix sum, or running total of the summation
Complete question:
Point charges q1=- 4.10nC and q2=+ 4.10nC are separated by a distance of 3.60mm , forming an electric dipole. The charges are in a uniform electric field whose direction makes an angle 36.8 ∘ with the line connecting the charges. What is the magnitude of this field if the torque exerted on the dipole has magnitude 7.30×10−9 N⋅m ? Express your answer in newtons per coulomb to three significant figures.
Answer:
The magnitude of this field is 826 N/C
Explanation:
Given;
The torque exerted on the dipole, T = 7.3 x 10⁻⁹ N.m
PEsinθ = T
where;
E is the magnitude of the electric field
P is the dipole moment
First, we determine the magnitude dipole moment;
Magnitude of dipole moment = q*r
P = 4.1 x 10⁻⁹ x 3.6 x 10⁻³ = 1.476 x 10⁻¹¹ C.m
Finally, we determine the magnitude of this field;

E = 826 N/C (in three significant figures)
Therefore, the magnitude of this field is 826 N/C
To solve this problem, we will apply the concepts related to Faraday's law that describes the behavior of the emf induced in the loop. Remember that this can be expressed as the product between the number of loops and the variation of the magnetic flux per unit of time. At the same time the magnetic flux through a loop of cross sectional area is,

Here,
= Angle between areal vector and magnetic field direction.
According to Faraday's law, induced emf in the loop is,





At time
, Induced emf is,


Therefore the magnitude of the induced emf is 10.9V
Mainly because of the higher energy of blue light than red light.
In fact, light is made of photons, each one carrying an energy equal to

where h is the Planck constant while f is the frequency of the light.
The frequency of red light is approximately 450 THz, while the frequency of blue light is about 650 Hz. Higher frequency means higher energy, so blue light is more energetic than red light and therefore it can cause more damages than red light.