Answer:
current going into a junction in a circuit is EQUAL TO the current comming out of the junction.
Explanation:
Krichhoff's Current Law
Kirchhoff's current law (1st Law) states that current flowing into a node (or a junction) must be equal to current flowing out of it.
The answer is a property of density. The higher the density, the higher the pressure at the bottom.
Pressure = mass / Area. So given that the 4 samples occupy the same area at the bottom, the mass is going to be the determining factor. Per given volume, mercury has the largest mass. The answer is A
Answer: b. Throw it directly away from the space station.
Explanation:
According to <u>Newton's third law of motion</u>, <em>when two bodies interact between them, appear equal forces and opposite senses in each of them.</em>
To understand it better:
Each time a body or object exerts a force on a second body or object, it (the second body) will exert a force of equal magnitude but in the opposite direction on the first.
So, if the astronaut throws the wrench away from the space station (in the opposite direction of the space station), according to Newton's third law, she will be automatically moving towards the station and be safe.
You can estimate one more digit past the smallest division on the measuring device. If you look at a 10mL graduated cylinder, for example, the smallest graduation is tenth of a milliliter (0.1mL). That means when you read the volume, you can estimate to the hundredths place (0.01mL).